Atjaunināt sīkdatņu piekrišanu

E-grāmata: Microsystems for Enhanced Control of Cell Behavior: Fundamentals, Design and Manufacturing Strategies, Applications and Challenges

  • Formāts - PDF+DRM
  • Cena: 154,06 €*
  • * ši ir gala cena, t.i., netiek piemērotas nekādas papildus atlaides
  • Ielikt grozā
  • Pievienot vēlmju sarakstam
  • Šī e-grāmata paredzēta tikai personīgai lietošanai. E-grāmatas nav iespējams atgriezt un nauda par iegādātajām e-grāmatām netiek atmaksāta.

DRM restrictions

  • Kopēšana (kopēt/ievietot):

    nav atļauts

  • Drukāšana:

    nav atļauts

  • Lietošana:

    Digitālo tiesību pārvaldība (Digital Rights Management (DRM))
    Izdevējs ir piegādājis šo grāmatu šifrētā veidā, kas nozīmē, ka jums ir jāinstalē bezmaksas programmatūra, lai to atbloķētu un lasītu. Lai lasītu šo e-grāmatu, jums ir jāizveido Adobe ID. Vairāk informācijas šeit. E-grāmatu var lasīt un lejupielādēt līdz 6 ierīcēm (vienam lietotājam ar vienu un to pašu Adobe ID).

    Nepieciešamā programmatūra
    Lai lasītu šo e-grāmatu mobilajā ierīcē (tālrunī vai planšetdatorā), jums būs jāinstalē šī bezmaksas lietotne: PocketBook Reader (iOS / Android)

    Lai lejupielādētu un lasītu šo e-grāmatu datorā vai Mac datorā, jums ir nepieciešamid Adobe Digital Editions (šī ir bezmaksas lietotne, kas īpaši izstrādāta e-grāmatām. Tā nav tas pats, kas Adobe Reader, kas, iespējams, jau ir jūsu datorā.)

    Jūs nevarat lasīt šo e-grāmatu, izmantojot Amazon Kindle.

This handbook focuses on the entire development process of biomedical microsystems that promote special interactions with cells. Fundamentals of cell biology and mechanobiology are described as necessary preparatory input for design tasks. Advanced design, simulation, and micro/nanomanufacturing resources, whose combined use enables the development of biomedical microsystems capable of interacting at a cellular level, are covered in depth. A detailed series of chapters is then devoted to applications based on microsystems that offer enhanced cellular control, including microfluidic devices for diagnosis and therapy, cell-based sensors and actuators (smart biodevices), microstructured prostheses for improvement of biocompatibility, microstructured and microtextured cell culture matrices for promotion of cell growth and differentiation, electrophoretic microsystems for study of cell mechanics, microstructured and microtextured biodevices for study of cell adhesion and dynamics, and

biomimetic microsystems (including organs-on-chips), among others. Challenges relating to the development of reliable in vitro biomimetic microsystems, the design and manufacture of complex geometries, and biofabrication are also discussed.

Part I Fundamentals.- Introduction to microsystems in the biomedical field.- Some introductory notes on cell biology.- Some introductory notes on cell mechanics and mechanobiology.- Some introductory notes on engineering resources for interacting with cells.- II. Design and Manufacturing Strategies.- Overview of design and manufacturing strategies for biomedical microsystems.- Biomimetic computer-aided design: Addressing the complexity of biomaterials.- Multi-scale and multi-physics/chemistry modeling in biomedical microsystems.- Rapid prototyping of biomedical microsystems for interacting at a cellular level.- Nanomanufacturing for biomedical microsystems interacting at a molecular scale.- Characterization technologies for biomedical microsystems interacting with cells.- Issues linked to the mass-production of biomedical microsystems.- Part III Applications.- Overview of applications based on microsystems capable of interacting with cells.- Microfluidic devices for in vitro drug

screening and detection.- Microfluidic devices for enhanced disease diagnosis and modeling.- Cell-based sensors and related microsystems.- Cell-based actuators and related microsystems.- Microsystems for the study of cells subject to gradients of chemicals.- Electrophoretic microsystems for studying cell mechanics.- Microtextured and microstructured biodevices for studying cell adhesion and dynamics.- Microtextured and.- microstructured cell culture matrixes for controlling cell behavior.- Resonant microsystems for controlling cell growth and differentiation.- Microtextured and microstructured prostheses for enhanced biocompatibility.- Microsystems for the study of cell interactions within physiological structures.- Biomimetic microsystems inspired in complete organs and their structures.- Part IV Present Challenges and Future Proposals.- Towards reliable organs-on-chips and humans-on-chips.- Towards reliable biomanufacturing technologies.- Towards a systematic methodology for the

development of biomedical microdevices.- Project-based learning in the field of biomedical microdevices.
Part I Fundamentals
1 Some Introductory Notes to Cell Behavior
3(12)
Andres Diaz Lantada
2 Brief Introduction to the Field of Biomedical Microsystems
15(10)
Andres Diaz Lantada
3 Brief Introduction to Biomedical Microsystems for Interacting with Cells
25(12)
Andres Diaz Lantada
4 State-of-the-Art Bioengineering Resources for Interacting with Cells
37(12)
Andres Diaz Lantada
Part II Design and Manufacturing Technologies and Strategies
5 Systematic Methodologies for the Development of Biomedical Microdevices
49(18)
Andres Diaz Lantada
6 Addressing the Complexity of Biomaterials by Means of Biomimetic Computer Aided Design
67(26)
Andres Diaz Lantada
7 Multi-scale and Multi-physical/Biochemical Modeling in Bio-MEMS
93(22)
Andres Diaz Lantada
8 Rapid Prototyping of Biomedical Microsystems for Interacting at a Cellular Level
115(32)
Andres Diaz Lantada
Jeffrey Resnick
Javier Mousa
Miguel Angel de Alba
Stefan Hengsbach
Milagros Ramos Gomez
9 Nanomanufacturing Technologies for Biomedical Microsystems Interacting at a Molecular Scale
147(16)
Andres Diaz Lantada
Jose Luis Endrino
10 Issues Linked to the Mass-Production of Biomedical Microsystems
163(14)
Andres Diaz Lantada
Part III Applications
11 Biomedical Microsystems for Disease Management
177(14)
Andres Diaz Lantada
Pilar Lafont Morgado
Pedro Ortego Garcia
12 Overview of Microsystems for Studying Cell Behavior Under Culture
191(18)
Andres Diaz Lantada
Alberto Bustamante
Alisa Morss Clyne
Rebecca Urbano
Adam C. Canver
Josefa Predestinacion Garcia Ruiz
Hernan Alarcon Iniesta
13 Microstructured Devices for Studying Cell Adhesion, Dynamics and Overall Mechanobiology
209(18)
Andres Diaz Lantada
Adrian de Bias Romero
Josefa Predestinacion Garcia Ruiz
Hernan Alarcon Iniesta
Stefan Hengsbach
Volker Piotter
14 Smart Microsystems for Active Cell Culture, Growth and Gene Expression Toward Relevant Tissues
227(22)
Andres Diaz Lantada
Enrique Colomer Mayola
Maria Consuelo Huerta Gomez de Merodio
Alban Muslija
Josefa Predestinacion Garcia Ruiz
Hernan Alarcon Iniesta
15 Tissue Engineering Scaffolds for 3D Cell Culture
249(20)
Andres Diaz Lantada
Diego Curras
Javier Mousa
Stefan Hengsbach
16 Tissue Engineering Scaffolds for Bone Repair: General Aspects
269(18)
Andres Diaz Lantada
Adrian de Bias Romero
Santiago Valido Moreno
Diego Curras
Miguel Tellez
Martin Schwentenwein
Christopher Jellinek
Johannes Homa
17 Tissue Engineering Scaffolds for Bone Repair: Application to Dental Repair
287(14)
Andres Diaz Lantada
Axel Michel
18 Tissue Engineering Scaffolds for Repairing Soft Tissues
301(30)
Andres Diaz Lantada
Enrique Colomer Mayola
Sebastien Deschamps
Beatriz Pareja Sanchez
Josefa Predestinacion Garcia Ruiz
Hernan Alarcon Iniesta
19 Tissue Engineering Scaffolds for Osteochondral Repair
331(20)
Andres Diaz Lantada
Graciela Fernandez Mejica
Miguel de la Pena
Miguel Tellez
Josefa Predestinacion Garcia Ruiz
Hernan Alarcon Iniesta
20 Fluidic Microsystems: From Labs-on-Chips to Microfluidic Cell Culture
351(22)
Andres Diaz Lantada
Beatriz del Valle Sese
Josefa Predestinacion Garcia Ruiz
Hernan Alarcon Iniesta
21 Cell-Based Sensors and Cell-Based Actuators
373(16)
Andres Diaz Lantada
Part IV Present Challenges and Future Proposals
22 Towards Reliable Organs-on-Chips and Humans-on-Chips
389(20)
Andres Diaz Lantada
Gillian Begasse
Alisa Morss Clyne
Stefan Hengsbach
Volker Piotter
Peter Smyrek
Klaus Plewa
Markus Guttmann
Wilhelm Pfleging
23 Towards Effective and Efficient Biofabrication Technologies
409(10)
Andres Diaz Lantada
24 Project-Based Learning in the Field of Biomedical Microdevices: The CDIO Approach
419(14)
Andres Diaz Lantada
Milagros Ramos Gomez
Jose Javier Serrano Olmedo
Miguel Angel Camara Vazquez
Borja Dominguez Nakamura
Appendix 433
Andrés Dķaz Lantada is Associate Professor at Technical University of Madrid (UPM), Spain, teaching 'Design and manufacture with polymers', 'Computer-aided engineering', and 'Bioengineering. He carries out research at the UPM Product Development Laboratory linked to the development of biomedical devices based on smart/multifunctional materials, biomimetic fractal and non-Euclidean designs, and mechanical metamaterials for enhanced performance and adequate tissue interaction.