Atjaunināt sīkdatņu piekrišanu

E-grāmata: Microwave Active Circuit Analysis and Design

(Chair of Communications Engineering, University College London (UCL) and head of UCL's Communications and Information Sy), (Principal Teaching Fellow and Director of Telecommunications Industry Programmes, University College London, UK)
  • Formāts: PDF+DRM
  • Izdošanas datums: 03-Nov-2015
  • Izdevniecība: Academic Press Inc
  • Valoda: eng
  • ISBN-13: 9780124079373
  • Formāts - PDF+DRM
  • Cena: 72,31 €*
  • * ši ir gala cena, t.i., netiek piemērotas nekādas papildus atlaides
  • Ielikt grozā
  • Pievienot vēlmju sarakstam
  • Šī e-grāmata paredzēta tikai personīgai lietošanai. E-grāmatas nav iespējams atgriezt un nauda par iegādātajām e-grāmatām netiek atmaksāta.
  • Formāts: PDF+DRM
  • Izdošanas datums: 03-Nov-2015
  • Izdevniecība: Academic Press Inc
  • Valoda: eng
  • ISBN-13: 9780124079373

DRM restrictions

  • Kopēšana (kopēt/ievietot):

    nav atļauts

  • Drukāšana:

    nav atļauts

  • Lietošana:

    Digitālo tiesību pārvaldība (Digital Rights Management (DRM))
    Izdevējs ir piegādājis šo grāmatu šifrētā veidā, kas nozīmē, ka jums ir jāinstalē bezmaksas programmatūra, lai to atbloķētu un lasītu. Lai lasītu šo e-grāmatu, jums ir jāizveido Adobe ID. Vairāk informācijas šeit. E-grāmatu var lasīt un lejupielādēt līdz 6 ierīcēm (vienam lietotājam ar vienu un to pašu Adobe ID).

    Nepieciešamā programmatūra
    Lai lasītu šo e-grāmatu mobilajā ierīcē (tālrunī vai planšetdatorā), jums būs jāinstalē šī bezmaksas lietotne: PocketBook Reader (iOS / Android)

    Lai lejupielādētu un lasītu šo e-grāmatu datorā vai Mac datorā, jums ir nepieciešamid Adobe Digital Editions (šī ir bezmaksas lietotne, kas īpaši izstrādāta e-grāmatām. Tā nav tas pats, kas Adobe Reader, kas, iespējams, jau ir jūsu datorā.)

    Jūs nevarat lasīt šo e-grāmatu, izmantojot Amazon Kindle.

This book teaches the necessary knowledge and skills required by today’s RF and microwave engineer in a concise, structured and systematic way. Reflecting modern developments in the field, the book focuses on active circuit design covering the latest devices and design techniques. It is an ideal textbook, containing full instructor support, for a one or two semester course on RF and microwave circuit design and analysis.

  • The book is uniquely structured in the form of 24 modular chapters, each covering a specific topic. The chapters are grouped into 8 broad subject areas. Each lecture is designed to be self-contained and builds on its predecessors
  • From electromagnetic and transmission line theory and S-parameters through amplifier and oscillator design including special techniques for low noise and broadband design
  • The focus is on active circuit analysis and design including up to date material on MMIC design techniques
  • Each lecture develops the material from concept through theoretical principles to practical design methodology, supported by numerous examples
  • Each chapter contains tutorial questions and problems to allow the reader to test their knowledge
  • Contains supporting material in the form of slides and software (Matlab) listings

Recenzijas

"Microwave Active Circuit Analysis and Design is an excellent book for final-year undergraduate, postgraduate and early-stage graduate engineers. Having taught Microwave Technology and Radio-Frequency Electronics for over 20 years, this is the closest book to my taught lecture courses. The contents combines all the important topics, from first principles, and in a holistic way. I will certainly recommend this book to my students." --Stepan Lucyszyn PhD, DSc, FIEEE, FIET, FInstP, FEMA, Reader (Associate Professor) in Millimetre-wave Electronics, Director of Centre for Terahertz Science and Engineering, Department of Electrical and Electronic Engineering, Imperial College London

"This text provides a comprehensive introduction to the subject of microwave electronics, taking the reader from the basics of Maxwells equations and the Telegraphers equations, through Smith Chart, network design and the use of S-parameters and finally illustrating and describing microwave circuits. This book will also serve as a valuable reference text for practitioners of the art of microwave circuit design." -Prof. Rob Sloan, Professor of Millimetre-wave Electronics & Royal Society Industrial Fellow, School E&EE, University of Manchester, UK

"This book takes the reader step-by-step through this complex subject in a concise, well-structured, and highly systematic way. Clive Poole and Izzat Darwazeh have succeeded in their goal of making this textbook not only informative but also enjoyable to read. I recommend this textbook to all who wish to explore this burgeoning field of study, whether they be undergraduate or postgraduate students, industry engineers or academic researchers." -Dr. Giovanni Crupi, BIOMORF Department, University of Messina, Messina, Italy

Papildus informācija

Learn how to implement the latest microwave active circuit design methods
Preface xv
Acknowledgments xvii
List of symbols and abbreviations xix
About the authors xxiii
Section A Foundations 1(140)
Chapter 1 Introduction
3(48)
Intended Learning Outcomes
4(1)
1.1 Introduction to Microwave Circuit Design
4(8)
1.1.1 What Are Microwaves?
4(2)
1.1.2 The Importance of Microwave Electronics
6(1)
1.1.3 Electromagnetism Basics
7(5)
1.2 Properties of Materials at Microwave Frequencies
12(8)
1.2.1 Resistivity
13(2)
1.2.2 The Skin Effect
15(1)
1.2.3 Permittivity and Permeability
16(2)
1.2.4 Losses in Dielectric and Magnetic Materials at Microwave Frequencies
18(2)
1.3 Behavior of Real Components at Microwave Frequencies
20(8)
1.3.1 Wire
20(1)
1.3.2 Resistors
21(2)
1.3.3 Capacitors
23(2)
1.3.4 Inductors
25(2)
1.3.5 Surface Mount Devices
27(1)
1.4 The Importance of Impedance Matching
28(3)
1.4.1 Maximum Power Transfer
28(3)
1.5 Common Microwave Metrics
31(3)
1.5.1 Return Loss
33(1)
1.6 Quality Factor, Q
34(12)
1.6.1 The Meaning of Q
34(6)
1.6.2 Loaded Q and External Q
40(1)
1.6.3 Q of a One-Port Resonator
41(5)
1.7 Takeaways
46(1)
Tutorial Problems
47(1)
References
48(3)
Chapter 2 Transmission Line Theory
51(38)
Intended Learning Outcomes
51(1)
2.1 Introduction
52(2)
2.2 Propagation and Reflection on a Transmission Line
54(9)
2.3 Sinusoidal Steady-State Conditions: Standing Waves
63(5)
2.4 Primary Line Constants
68(4)
2.4.1 The Lossless Transmission Line
71(1)
2.5 Derivation of the Characteristic Impedance
72(2)
2.6 Transmission Lines With Arbitrary Terminations
74(7)
2.6.1 Input Impedance at an Arbitrary Point on a Terminated Line
76(2)
2.6.2 Special Cases: Short-Circuit Line
78(2)
2.6.3 Special Cases: Open-Circuit Line
80(1)
2.6.4 Special Cases: Matched Line
81(1)
2.7 The Effect of Line Losses
81(2)
2.7.1 Characteristic Impedance of Lossy Lines
81(1)
2.7.2 Dispersion
82(1)
2.8 Power Considerations
83(2)
2.9 Takeaways
85(1)
Tutorial Problems
86(1)
References
87(2)
Chapter 3 Practical Transmission Lines
89(32)
Intended Learning Outcomes
89(1)
3.1 Introduction
90(1)
3.2 Waveguide
90(5)
3.3 Co-Axial Cable
95(3)
3.4 Twisted Pair
98(1)
3.5 Microstrip
99(6)
3.6 Microstrip Discontinuities
105(7)
3.6.1 Edge Effects in Microstrip
105(1)
3.6.2 Microstrip Gaps and DC Blocks
106(2)
3.6.3 Microstrip Bends and Curves
108(2)
3.6.4 Microstrip Step Width Change
110(2)
3.7 Stripline III
3.8 Coplanar Waveguide
112(2)
3.9 Takeaways
114(2)
Tutorial Problems
116(1)
References
117(4)
Chapter 4 The Smith Chart
121(20)
Intended Learning Outcomes
121(1)
4.1 Introduction to the Smith Chart
122(1)
4.2 Smith Chart Derivation
122(9)
4.2.1 Derivation of Constant Resistance Circles
124(2)
4.2.2 Derivation of Constant Reactance Circles
126(1)
4.2.3 Building the Complete Smith Chart
127(4)
4.3 Using the Smith Chart
131(4)
4.3.1 Conversion Between Immittance and Reflection Coefficient
131(2)
4.3.2 Impedance at Any Point on a Transmission Line
133(1)
4.3.3 Constant Q Contours on the Smith Chart
134(1)
4.4 Smith Chart Variants
135(2)
4.4.1 Combined Impedance-Admittance Smith Chart
135(2)
4.4.2 Compressed Smith Chart
137(1)
4.5 Takeaways
137(1)
Tutorial Problems
138(2)
References
140(1)
Section B Microwave Circuit Analysis 141(212)
Chapter 5 Immittance Parameters
143(24)
Intended Learning Outcomes
143(1)
5.1 Introduction
144(8)
5.1.1 The Admittance or Y-Parameters
145(1)
5.1.2 The Impedance or Z-Parameters
146(3)
5.1.3 The Hybrid or h-Parameters
149(1)
5.1.4 The Chain or ABCD-Parameters
150(2)
5.2 Conversion Between Immittance Parameters
152(1)
5.3 Input and Output Impedance of a Two-Port in Terms of Immittance Parameters
153(2)
5.4 Classification of Immittance Matrices
155(4)
5.4.1 Activity and Passivity
155(3)
5.4.2 Unilaterality
158(1)
5.4.3 Reciprocity and Symmetry
158(1)
5.5 Immittance Parameter Representation of Active Devices
159(2)
5.5.1 Two-Port Representation of Transistors
159(2)
5.6 Immittance Parameter Analysis of Two-Ports With Feedback
161(3)
5.6.1 The Benefits of Feedback
161(1)
5.6.2 Shunt Feedback
161(1)
5.6.3 Series Feedback
161(1)
5.6.4 Miller's Theorem
162(2)
5.7 Takeaways
164(1)
Tutorial Problems
164(2)
References
166(1)
Chapter 6 S-Parameters
167(38)
Intended Learning Outcomes
168(1)
6.1 Introduction
168(6)
6.1.1 Limitations of the Immittance Parameter Approach
169(1)
6.1.2 Definition of the Scattering Parameters
170(4)
6.2 Input and Output Impedance of a Two-Port in Terms of S-Parameters
174(1)
6.3 Classification of S-Matrices
175(5)
6.3.1 Lossless and Reciprocal Networks
175(1)
6.3.2 Activity and Passivity
176(4)
6.3.3 Unilaterality
180(1)
6.4 Signal Flow Graphs
180(7)
6.4.1 Decomposition of Signal Flow Graphs
181(6)
6.5 Scattering Transfer Parameters
187(3)
6.6 Relationship Between S-Parameters and Immittance Parameters
190(1)
6.7 Measurement of S-Parameters
191(10)
6.7.1 The Network Analyzer
193(2)
6.7.2 VNA Measurement Procedure
195(1)
6.7.3 Network Analyzer Error Correction
195(1)
6.7.4 One-Port Error Model (The "Three-Term" Model)
196(3)
6.7.5 Two-Port Error Model (The "12-Term" Model)
199(2)
6.8 Takeaways
201(1)
Tutorial Problems
202(2)
References
204(1)
Chapter 7 Gain and Stability of Active Networks
205(40)
Intended Learning Outcomes
205(1)
7.1 Introduction
206(1)
7.2 Power Gain in Terms of Immittance Parameters
206(9)
7.2.1 Voltage Gain of an Active Two-Port
206(1)
7.2.2 Power Gain of an Active Two-Port
207(8)
7.3 Stability in Terms of Immittance Parameters
215(2)
7.4 Stability in Terms of S-Parameters
217(12)
7.4.1 Introduction
217(1)
7.4.2 Stability Circles
217(7)
7.4.3 Stability Criteria in Terms of S-Parameters
224(5)
7.5 Power Gain in Terms of S-Parameters
229(12)
7.5.1 Maximum Available Gain and Conjugate Terminations
235(3)
7.5.2 Constant Power Gain Circles
238(3)
7.6 Takeaways
241(1)
Tutorial Problems
242(1)
References
243(2)
Chapter 8 Three-Port Analysis Techniques
245(40)
Intended Learning Outcomes
245(1)
8.1 Introduction
246(1)
8.2 Three-Port Immittance Parameters
247(2)
8.3 Three-Port S-Parameters
249(10)
8.3.1 Derivation of Three-Port S-Parameters
250(7)
8.3.2 Calculation of Reduced Two-Port S-Parameters
257(2)
8.4 Configuration Conversion
259(2)
8.4.1 Common Base/Gate Configuration
260(1)
8.4.2 Common Collector/Drain Configuration
260(1)
8.5 Feedback Mappings
261(10)
8.5.1 Introduction
261(5)
8.5.2 Classification of Feedback Mappings
266(5)
8.6 Application of Three-Port Design Techniques
271(7)
8.6.1 Generating Negative Resistance in Transistors
271(4)
8.6.2 The Active Isolator
275(3)
8.7 Reverse Feedback Mappings
278(3)
8.8 Takeaways
281(1)
Tutorial Problems
281(1)
References
282(3)
Chapter 9 Lumped Element Matching Networks
285(26)
Intended Learning Outcomes
285(1)
9.1 Introduction
286(1)
9.1.1 The Need for Impedance Matching
286(1)
9.2 L-Section Matching Networks
287(13)
9.2.1 L-Section Matching of a Resistive Source to a Resistive Load
287(4)
9.2.2 Generalized Analytical Design of Type 1 L-Section
291(1)
9.2.3 Generalized Analytical Design of Type 2 L-Section
292(1)
9.2.4 L-Section Design Using the Smith Chart
293(4)
9.2.5 Forbidden Regions on the Smith Chart
297(1)
9.2.6 Four-Step Design Procedure for Generalized L-Sections
298(2)
9.3 Three Element Matching Networks
300(9)
9.3.1 The π-Section Matching Network
301(4)
9.3.2 The T-Section Matching Network
305(2)
9.3.3 π to T Transformation
307(2)
9.4 Bandwidth of Lumped Element Matching Networks
309(1)
9.5 Takeaways
309(1)
Tutorial Problems
310(1)
References
310(1)
Chapter 10 Distributed Element Matching Networks
311(42)
Intended Learning Outcomes
311(1)
10.1 Introduction
312(1)
10.2 Impedance Transformation With Line Sections
312(2)
10.3 Single Stub Matching
314(10)
10.3.1 Single Stub Matching: Analytical Approach
316(3)
10.3.2 Single Stub Matching: Graphical Approach
319(5)
10.4 Double Stub Matching
324(16)
10.4.1 Double Stub Matching: Analytical Approach
326(3)
10.4.2 Double Stub Matching: Graphical Approach
329(3)
10.4.3 Forbidden Regions for Double Stub Matching
332(8)
10.5 Triple Stub Matching
340(1)
10.6 Quarter-Wave Transformer Matching
340(4)
10.7 Bandwidth of Distributed Element Matching Networks
344(5)
10.7.1 Bandwidth of Stub Matching Networks
344(3)
10.7.2 Bandwidth of Quarter-Wave Transformers
347(2)
10.8 Summary
349(1)
10.9 Takeaways
350(1)
Tutorial Problems
351(1)
References
352(1)
Section C Microwave Circuit Design 353(264)
Chapter 11 Microwave Semiconductor Materials and Diodes
355(40)
Intended Learning Outcomes
355(1)
11.1 Introduction
356(1)
11.2 Choice of Microwave Semiconductor Materials
357(6)
11.3 Microwave Semiconductor Fabrication Technology
363(3)
11.3.1 Photolithography
363(2)
11.3.2 Molecular Beam Epitaxy
365(1)
11.4 The pn-Junction
366
11.5 Schottky Diodes
170(201)
11.6 Varactor Diodes
371(4)
11.7 PIN Diodes
375(5)
11.8 Tunnel Diodes
380(3)
11.9 Gunn Diodes
383(5)
11.9.1 Gunn Diode Oscillators
385(3)
11.10 The IMPATT Diode Family
388(1)
11.11 Takeaways
389
References
190(205)
Chapter 12 Microwave Transistors and MMICs
395(44)
Intended Learning Outcomes
396(1)
12.1 Introduction
396(1)
12.2 Microwave Bipolar Junction Transistors
397(10)
12.2.1 BJT Construction
397(1)
12.2.2 The BIT Equivalent Circuit
398(6)
12.2.3 h-Parameters of the BJT Hybrid-ir Equivalent Circuit
404(3)
12.3 Heterojunction Bipolar Transistor
407(1)
12.4 Microwave Field-Effect Transistors
408(2)
12.4.1 The Metal Semiconductor FET
408(1)
12.4.2 MESFET Construction
408(1)
12.4.3 High Electron Mobility Transistors Construction
409(1)
12.5 MESFET and HEMT Equivalent Circuit
410(5)
12.5.1 MESFET Equivalent Circuit Parameter Extraction
414(1)
12.6 Monolithic Microwave Integrated Circuits
415(1)
12.7 MMIC Technologies
416(2)
12.8 MMIC Circuit Elements
418(11)
12.8.1 MMIC MESFETs
418(1)
12.8.2 MMIC Diodes
419(1)
12.8.3 MMIC Resistors
420(2)
12.8.4 MMIC Capacitors
422(2)
12.8.5 MMIC Inductors
424(3)
12.8.6 MMIC Transmission Lines
427(1)
12.8.7 Via Holes, Bond Pads, and Other Structures
428(1)
12.9 MMIC Application Example
429(3)
12.10 Takeaways
432(1)
References
432(7)
Chapter 13 Microwave Amplifier Design
439(36)
Intended Learning Outcomes
439(1)
13.1 Introduction
440(1)
13.2 Single-Stage Amplifier Design
440(9)
13.2.1 The Unilateral Approximation
445(1)
13.2.2 Unilateral Gain
445(2)
13.2.3 Circles of Constant Unilateral Gain
447(1)
13.2.4 Error Involved in the Unilateral Approximation
448(1)
13.3 Single-Stage Feedback Amplifier Design
449(3)
13.4 Multistage Amplifiers
452(8)
13.4.1 Fundamental Limits on the Bandwidth of Interstage Matching Networks
456(4)
13.5 Broadband Amplifiers
460(10)
13.5.1 Lossy Matched Amplifiers
461(1)
13.5.2 Broadband Feedback Amplifiers
462(2)
13.5.3 Distributed Amplifiers
464(6)
13.6 Takeaways
470(1)
References
471(4)
Chapter 14 Low-Noise Amplifier Design
475(44)
Intended Learning Outcomes
475(1)
14.1 Introduction
476(1)
14.2 Types of Electrical Noise
477(4)
14.2.1 Thermal Noise
477(2)
14.2.2 Shot Noise
479(1)
14.2.3 Flicker Noise
480(1)
14.3 Noise Factor, Noise Figure, and Noise Temperature
481(2)
14.4 Representation of Noise in Active Two-Port Networks
483(6)
14.5 Single-Stage Low-Noise Amplifier Design
489(11)
14.5.1 Circles of Constant Noise Figure
489(10)
14.5.2 Noise Factor of Passive Two-Ports
499(1)
14.6 Multistage Low-Noise Amplifier Design
500(7)
14.6.1 Circles of Constant Noise Measure
503(4)
14.7 Noise Measurements
507(7)
14.7.1 Noise Figure Measurement
507(5)
14.7.2 Noise Characterization of Microwave Transistors
512(2)
14.8 Takeaways
514(1)
References
515(4)
Chapter 15 Microwave Oscillator Design
519(40)
Intended Learning Outcomes
519(1)
15.1 Introduction
520(4)
15.2 RF Feedback Oscillators
524(7)
15.2.1 The Feedback Oscillator Model
524(2)
15.2.2 Colpitts Oscillator
526(2)
15.2.3 Hartley Oscillator
528(1)
15.2.4 Clapp/Gouriet Oscillator
529(2)
15.3 Cross-Coupled Oscillators
531(4)
15.4 Negative Resistance Oscillators
535(4)
15.5 Frequency Stabilization
539(11)
15.5.1 Crystal Stabilization
540(4)
15.5.2 Cavity Stabilization
544(3)
15.5.3 Dielectric Resonator Stabilization
547(3)
15.6 Voltage Controlled Oscillators
550(3)
15.6.1 YIG Tuned Oscillators
550(1)
15.6.2 Varactor Tuned Oscillators
551(2)
15.7 Injection Locked and Synchronous Oscillators
553(3)
15.8 Takeaways
556(1)
References
556(3)
Chapter 16 Low-Noise Oscillator Design
559(30)
Intended Learning Outcomes
559(1)
16.1 Introduction
560(1)
16.2 Definition of Phase Noise
561(3)
16.3 Why Oscillator Phase Noise Is Important
564(1)
16.4 Root Causes of Phase Noise
565(2)
16.4.1 The Thermal Noise Component of Phase Noise
565(1)
16.4.2 Flicker Noise in Oscillators
566(1)
16.5 Modeling Oscillator Phase Noise
567(15)
16.5.1 Analytical Phase-Noise Models: Feedback Oscillator
571(8)
16.5.2 Analytical Phase-Noise Models: Negative Resistance Oscillator
579(2)
16.5.3 Comparison of Feedback and Negative Resistance Oscillator Phase-Noise Equations
581(1)
16.6 Low-Noise Oscillator Design
582(1)
16.6.1 Low-Noise Design: Resonator
582(1)
16.6.2 Low-Noise Design: Transistor
582(1)
16.7 Phase-Noise Measurements
583(3)
16.7.1 The Direct Method
583(1)
16.7.2 The Phase Detector Method
584(1)
16.7.3 The Delay Line/Frequency Discriminator Method
585(1)
16.8 Takeaways
586(1)
References
587(2)
Chapter 17 Microwave Mixers
589(28)
Intended Learning Outcomes
589(1)
17.1 Introduction
590(1)
17.2 Mixer Characterization
591(3)
17.2.1 Conversion Gain
592(1)
17.2.2 Isolation
592(1)
17.2.3 Dynamic Range
592(1)
17.2.4 Third-Order Intercept Point: IP3
593(1)
17.2.5 Noise Figure
594(1)
17.3 Basic Mixer Operation
594(5)
17.4 Passive Mixer Circuits
599(5)
17.4.1 Nonlinear Diode Mixer
600(1)
17.4.2 Passive Double Balanced Diode Mixer
601(3)
17.5 Active Mixer Circuits
604(11)
17.5.1 Active Single Balanced Mixer Using BJT
604(4)
17.5.2 Active Double Balanced Mixer: The Gilbert Cell
608(4)
17.5.3 Conversion Gain of the Gilbert Cell
612(2)
17.5.4 The FET Gilbert Cell
614(1)
17.6 Takeaways
615(1)
References
615(2)
Appendix A Parameter Conversion Tables 617(4)
A.1 Two-Port Immittance Parameter Conversions
617(1)
A.2 Two-Port S-Parameters to Immittance Parameter Conversions
618(1)
A.3 Two-Port Immittance Parameter to S-Parameter Conversions
618(1)
A.4 Two-Port T-Parameter and S-Parameter Conversions
619(2)
Appendix B Physical Constants 621(2)
Appendix C Forbidden Regions for L-Sections 623(6)
C.1 Forbidden Regions for LC L-Sections
623(1)
C.2 Forbidden Regions for LL and CC L-Sections
623(6)
Index 629
Clive Poole is a Principal Teaching Fellow and Director of Telecommunications Industry Programmes at University College London (UCL). He has 30 years experience in the global electronics and telecommunications industries as well as academia. He started his career as a design engineer in several UK microwave companies, designing X-band and Ku-band amplifiers and oscillators for military and telecommunications applications. In the early 1990s he founded an electronics design consultancy in Hong Kong that developed a number of successful wireless and telecommunications products for Chinese manufacturers. He has run several high technology businesses, including a bespoke paging equipment manufacturer and a large contract manufacturing operation. He was a pioneer in the business of deploying mobile phone networks on ocean going passenger ships. Dr Pooles teaching is focused in the areas of electronic and microwave circuit design, wireless and mobile communications, technology business strategy and finance. He holds a BSc degree in Electronic Engineering and MSc and PhD degrees in microwave engineering from the University of Manchester. He also holds an MBA from the Open University. Dr Poole is a Chartered Engineer and Fellow the Institute of Engineering and Technology (FIET). Izzat Darwazeh is the Chair of Communications Engineering in University College London (UCL) and head of UCL's Communications and Information Systems Group. He is an electrical engineering graduate of the University of Jordan and holds the MSc and PhD degrees from the University of Manchester in the UK. He has been teaching and active in microwave circuit design and communications circuits and systems research since 1991. He has published over 250 scientific papers and is the co-editor of the 1995 IEE book on Analogue Fibre Communications and of the 2008 Elsevier-Newness book on Electrical Engineering. He is also the co-author (with Luis Moura) of the 2005 book on Linear Circuit Analysis and Modelling. He currently teaches mobile and wireless communications and circuit design and his current research interests are in ultra high-speed microwave circuits and in wireless and optical communication systems. In addition to his teaching, Professor Darwazeh acts as a consultant to various engineering firms and government, financial and legal entities in the UK and worldwide. Professor Darwazeh is a Chartered Engineer and Fellow the Institute of Engineering and Technology (FIET).