Atjaunināt sīkdatņu piekrišanu

E-grāmata: Microwave Material Applications: Device Miniaturization and Integration

  • Formāts: 254 pages
  • Izdošanas datums: 31-Jan-2016
  • Izdevniecība: Artech House Publishers
  • ISBN-13: 9781630814359
Citas grāmatas par šo tēmu:
  • Formāts - PDF+DRM
  • Cena: 30,43 €*
  • * ši ir gala cena, t.i., netiek piemērotas nekādas papildus atlaides
  • Ielikt grozā
  • Pievienot vēlmju sarakstam
  • Šī e-grāmata paredzēta tikai personīgai lietošanai. E-grāmatas nav iespējams atgriezt un nauda par iegādātajām e-grāmatām netiek atmaksāta.
  • Formāts: 254 pages
  • Izdošanas datums: 31-Jan-2016
  • Izdevniecība: Artech House Publishers
  • ISBN-13: 9781630814359
Citas grāmatas par šo tēmu:

DRM restrictions

  • Kopēšana (kopēt/ievietot):

    nav atļauts

  • Drukāšana:

    nav atļauts

  • Lietošana:

    Digitālo tiesību pārvaldība (Digital Rights Management (DRM))
    Izdevējs ir piegādājis šo grāmatu šifrētā veidā, kas nozīmē, ka jums ir jāinstalē bezmaksas programmatūra, lai to atbloķētu un lasītu. Lai lasītu šo e-grāmatu, jums ir jāizveido Adobe ID. Vairāk informācijas šeit. E-grāmatu var lasīt un lejupielādēt līdz 6 ierīcēm (vienam lietotājam ar vienu un to pašu Adobe ID).

    Nepieciešamā programmatūra
    Lai lasītu šo e-grāmatu mobilajā ierīcē (tālrunī vai planšetdatorā), jums būs jāinstalē šī bezmaksas lietotne: PocketBook Reader (iOS / Android)

    Lai lejupielādētu un lasītu šo e-grāmatu datorā vai Mac datorā, jums ir nepieciešamid Adobe Digital Editions (šī ir bezmaksas lietotne, kas īpaši izstrādāta e-grāmatām. Tā nav tas pats, kas Adobe Reader, kas, iespējams, jau ir jūsu datorā.)

    Jūs nevarat lasīt šo e-grāmatu, izmantojot Amazon Kindle.

This comprehensive new resource based on the classic Artech House title, Microwave Materials for Wireless Applications, introduces the use of new microwave materials for passive devices including ferrites, magnetization garnets, dielectric materials, and absorbers for wireless and antenna applications. This book explores a new set of magnetic and dielectric materials that assist with size reduction of passive devices such as ferrite isolators and circulators. Revised data on the applications of absorbers, including examples of different combinations of magnetic, dielectric, and absorber materials into integrated devices is presented. Meta-materials for antennas and potential antenna integration onto soft boards or LTCC filter technologies using tunable devices with new materials are covered.Professionals learn how new material designs use properties of certain ions in oxide compounds to reduce their physical size, including in cellular base stations designed for 4G and 5G cell phone communication systems. This book exhibits how the integration of new materials into cellular systems using common transmission lines will further save size and reduce complexity. New technologies are presented demonstrating the use of sol-gel processing and ceramic processing in the use of low temperature co-fired ceramics, plastic molding, and 3D printing demonstrating improved device designs.
Preface xiii
Introduction xv
Acknowledgments xvii
1 New Magnetic Materials
1(16)
1.1 New High Magnetization Garnets for Microwave Magnetic Devices
1(1)
1.2 The Structure of Garnets
2(1)
1.3 The Magnetization and Curie Temperature of Bismuth-Substituted YIG
3(2)
1.4 Dielectric Constant and Bismuth Content
5(1)
1.5 Octahedral Substitution
6(2)
1.6 Comparison with Existing YIG-Based Materials
8(4)
1.7 Device Considerations
12(5)
References
15(1)
Selected Bibliography
15(2)
2 New Magnetic Materials: Expanding Applications
17(16)
2.1 Higher-Frequency Devices Using New Low-Magnetization Garnets
17(2)
2.2 Choice of Substitute Elements
19(1)
2.3 Nonmagnetic Tetrahedral Substitution
20(1)
2.4 Vanadium Substitution
20(4)
2.5 Aluminum Substitution
24(2)
2.6 Gadolinium Substitution
26(4)
2.7 Comparison with Existing Materials
30(3)
References
32(1)
3 Miniaturization of Ferrite Devices Using High Dielectric Constant Ferrite
33(14)
3.1 Description of the Junction Circulator Mode
33(1)
3.2 Experimental Proof of Size Reduction
34(2)
3.3 Device Implications of Dielectric Constant
36(2)
3.4 Miniaturization of Other Ferrite Devices
38(1)
3.5 High Dielectric Constant Garnet and Latching and Switching Devices
39(6)
3.6 Low-Frequency Antennas
45(2)
References
45(1)
Selected Bibliography
45(2)
4 Dielectrics
47(18)
4.1 Background
47(1)
4.2 High Dielectric Constant Materials
48(1)
4.3 Perovskites
49(2)
4.4 Tetragonal Tungsten Bronze Dielectrics (TTBs)
51(1)
4.5 Bismuth Niobium-Based Systems
52(2)
4.6 Summary of Candidate Dielectrics
54(1)
4.7 Low Dielectric Constant Materials (LTCC)
54(1)
4.8 LTCC Integration
55(4)
4.9 Low Dielectric Constant MICs
59(2)
4.10 Low Dielectric Constant Soft-Substrate Hybrid Assembly
61(4)
References
63(2)
5 Further Miniaturization with Combinations of Bismuth Garnets and Dielectrics
65(18)
5.1 Introduction
65(1)
5.2 Above-Resonance Operation
65(5)
5.3 Below-Resonance Operation
70(10)
5.4 Microstrip Devices
80(3)
References
82(1)
Selected Bibliography
82(1)
6 Absorbers
83(26)
6.1 Introduction
83(1)
6.2 Low-Permittivity, Magnetic/Dielectric Composite Absorbers
84(3)
6.3 Ferroelectric Absorbers Based on BaTiO3
87(2)
6.4 Combinations of Ferroelectric and Magnetic Absorbers
89(1)
6.5 Commercial Absorbers as Loads
89(2)
6.6 New Materials Based on Magnetic Metal Combinations
91(1)
6.7 Ferrite-Based Absorbers
92(3)
6.8 Hexagonal Ferrites as Absorbers
95(6)
6.9 Ferrite Polymer Composites as Absorbers
101(1)
6.10 Alternate Ferroelectric Absorbers
101(2)
6.11 Low-Temperature Firing Absorbers
103(2)
6.12 Very High-Power Absorbers
105(4)
References
106(2)
Selected Bibliography
108(1)
7 Dielectric and Magnetic Integration
109(20)
7.1 First Steps in Integration and Their Effect on Microwave Performance
109(3)
7.2 Nonmagnetic Garnets as Dielectric Substrates
112(1)
7.3 Combinations of Garnets
112(1)
7.4 Performance Enhancement: Insertion Loss and Intermodulation
113(4)
7.5 Other Sources of Insertion Loss in Magnetic Devices
117(1)
7.6 Intermodulation (IMD)
118(2)
7.7 Below-Resonance IMD Reduction
120(3)
7.8 IMD in Dielectrics
123(4)
7.9 IMD and Harmonics in Systems
127(2)
References
127(2)
8 Antennas
129(16)
8.1 Antenna Application Trends
129(3)
8.2 MIMO and Massive MIMO
132(1)
8.3 Patch Antennas
133(1)
8.4 Patch Antenna Realizations
134(1)
8.5 Enhanced Patch Antennas Using RIS and EBG
135(3)
8.6 Antenna Arrays
138(1)
8.7 Ferrite-Based Patch Antennas
139(6)
References
143(2)
9 Filters
145(18)
9.1 Cellular Transceiver Filters
145(2)
9.2 Edge-Coupled Microstrip Filters
147(2)
9.3 Coaxial Dielectric TEM Filters
149(1)
9.4 Couplers and Baluns
150(1)
9.5 Acoustic Filters
151(2)
9.6 SAW Filters
153(2)
9.7 Bulk Acoustic Wave Filters
155(1)
9.8 Dielectric Resonator-Based Filters
156(3)
9.9 Performance and Integration Summary for Filter Types
159(4)
References
161(2)
10 Tunable Devices
163(20)
10.1 Classes of Tunable Materials
163(1)
10.2 Types of Devices
164(1)
10.3 Microstrip/Stripline Filter Tuning
164(1)
10.4 Paraelectric Materials as Tunable Elements
165(1)
10.5 Magnetic Tuning
166(1)
10.6 Tunable Devices Based on Ferrite Biased to Resonance
167(1)
10.7 Tunable SIW Filters
168(1)
10.8 Tunable Coaxial Dielectric TEM Resonators
168(1)
10.9 Tunable Acoustic Filters
169(1)
10.10 Piezoelectric and Paraelectric-Based Filters
170(1)
10.11 Switchable Devices
171(2)
10.12 Smart Antennas and Phased Arrays
173(3)
10.13 Tunable TE and TM Filters
176(1)
10.14 Summary and Conclusions
177(6)
References
179(4)
11 Subsystem Integration
183(12)
11.1 Transceiver Integration
183(2)
11.2 Integration of Ferroelectric Devices
185(1)
11.3 Antenna Integration
185(1)
11.4 Low- to High-Powered Base Stations
186(2)
11.5 Transceiver Topology
188(2)
11.6 Summary of Base Station Filter Options
190(2)
11.7 Antenna Considerations
192(1)
11.8 Soft Board Versus Ceramic Microstrip and LTCC
192(3)
References
193(2)
12 New Manufacturing Techniques for Dielectric and Magnetic Materials Used in Microwave Devices
195(18)
12.1 Introduction
195(1)
12.2 Additive Manufacturing
195(1)
12.3 AM Devices Using Plastic and Metal Only
196(2)
12.4 Ceramic AM
198(1)
12.5 Stereolithography (SL) Applied to Microwave Circuits and Components
198(1)
12.6 Cofired Composite Structures Using AM
199(2)
12.7 Ceramic Injection Molding (CIM)
201(2)
12.8 Sol-Gel Processing
203(1)
12.9 Bismuth Containing Garnets and Sol-Gel
204(3)
12.10 Bismuth Zinc Niobate Dielectric by Sol-Gel
207(1)
12.11 Magnetic Spinel and Hexagonal Ferrites by Sol-Gel
207(1)
12.12 Lead Zirconium Titanate (PZT) Piezoelectrics by Sol-Gel
208(1)
12.13 Thin-Film Deposition
209(4)
References
210(3)
About the Author 213(2)
Index 215
David B. Cruickshank is a microwave materials applications consultant with more than 40 years of R&D experience, applications engineering, engineering management and general management at Ferranti Radar and Racal Electronics in the UK, and Skyworks Trans Tech in the US. He earned his degree in physical chemistry from the University of Edinburgh.