Atjaunināt sīkdatņu piekrišanu

E-grāmata: Microwave Materials for Wireless Applications

  • Formāts: 248 pages
  • Izdošanas datums: 31-Jan-2011
  • Izdevniecība: Artech House Publishers
  • ISBN-13: 9781608070930
Citas grāmatas par šo tēmu:
  • Formāts - PDF+DRM
  • Cena: 98,05 €*
  • * ši ir gala cena, t.i., netiek piemērotas nekādas papildus atlaides
  • Ielikt grozā
  • Pievienot vēlmju sarakstam
  • Šī e-grāmata paredzēta tikai personīgai lietošanai. E-grāmatas nav iespējams atgriezt un nauda par iegādātajām e-grāmatām netiek atmaksāta.
  • Formāts: 248 pages
  • Izdošanas datums: 31-Jan-2011
  • Izdevniecība: Artech House Publishers
  • ISBN-13: 9781608070930
Citas grāmatas par šo tēmu:

DRM restrictions

  • Kopēšana (kopēt/ievietot):

    nav atļauts

  • Drukāšana:

    nav atļauts

  • Lietošana:

    Digitālo tiesību pārvaldība (Digital Rights Management (DRM))
    Izdevējs ir piegādājis šo grāmatu šifrētā veidā, kas nozīmē, ka jums ir jāinstalē bezmaksas programmatūra, lai to atbloķētu un lasītu. Lai lasītu šo e-grāmatu, jums ir jāizveido Adobe ID. Vairāk informācijas šeit. E-grāmatu var lasīt un lejupielādēt līdz 6 ierīcēm (vienam lietotājam ar vienu un to pašu Adobe ID).

    Nepieciešamā programmatūra
    Lai lasītu šo e-grāmatu mobilajā ierīcē (tālrunī vai planšetdatorā), jums būs jāinstalē šī bezmaksas lietotne: PocketBook Reader (iOS / Android)

    Lai lejupielādētu un lasītu šo e-grāmatu datorā vai Mac datorā, jums ir nepieciešamid Adobe Digital Editions (šī ir bezmaksas lietotne, kas īpaši izstrādāta e-grāmatām. Tā nav tas pats, kas Adobe Reader, kas, iespējams, jau ir jūsu datorā.)

    Jūs nevarat lasīt šo e-grāmatu, izmantojot Amazon Kindle.

This practical resource offers engineers an in-depth, up-to-date understanding of the use of microwave magnetic materials for cutting-edge wireless applications. The book discusses device applications used in wireless infrastructure base stations, point-to-point radio links, and a range of more specialized microwave systems. Professionals find detailed discussions on the attributes of each family of magnetic materials with respect to specific wireless applications. Moreover, the book addresses two of the hottest topics in the field today - insertion loss and intermodulation. This comprehensive reference also covers ancillary materials that are used with microwave magnetic materials, such as dielectrics, absorbers, and conductors.
Preface xv
Acknowledgments xvii
Introduction xix
1 Garnets
1(22)
1.1 Introduction
1(2)
1.2 Garnet Structure and Chemistry
3(2)
1.3 Magnetism and Ferrimagnetism
5(1)
1.4 Magnetic Ions Behaving Badly
6(1)
1.5 Lanthanides and Dodecahedral Substitution
7(4)
1.6 Octahedral Substitution
11(3)
1.6.1 Nonmagnetic Octahedral Substitution
11(2)
1.6.2 Manganese (Mn) Substitution
13(1)
1.6.3 Cobalt (Co) Substitution
14(1)
1.7 Tetrahedral Substitution
14(3)
1.7.1 Aluminum (Al)
14(2)
1.7.2 Gallium (Ga)
16(1)
1.7.3 Vanadium (V)
16(1)
1.8 Mixed Systems
17(1)
1.8.1 Low Firing Temperature Garnets
18(1)
1.9 Rare Earth Substitution
18(1)
1.10 Summary
19(4)
References
20(1)
Selected Bibliography
21(2)
2 Spinels
23(16)
2.1 Introduction
23(2)
2.2 Nickel Spinels
25(7)
2.2.1 Overview of Nickel Spinel Applications
26(5)
2.2.2 Nickel Ferrites Above 10 GHz
31(1)
2.3 Magnesium Spinels
32(1)
2.4 Lithium Ferrite
33(3)
2.5 Summary
36(3)
References
36(1)
Selected Bibliography
37(2)
3 Absorbers
39(18)
3.1 Introduction
39(1)
3.2 Ni and NiZn Ferrite Absorbers
40(4)
3.3 Water as an Absorber
44(2)
3.4 Barium Titanate Piezoelectrics
46(2)
3.5 Silicon Carbide Absorbers
48(1)
3.6 Magnetic Metal Polymer Composite Materials
49(4)
3.7 Hexagonal Ferrite Absorbers
53(1)
3.8 Summary
53(4)
References
53(4)
4 Plastics and Plastic Ceramic Composite Materials
57(20)
4.1 Introduction
57(1)
4.2 Plastics and Hydrocarbon Polymers
58(3)
4.2.1 Hydrocarbon-Based Polymers
58(1)
4.2.2 Hydrocarbons with Aromatic Side Chains
59(2)
4.3 Fluorocarbon-Based Polymers
61(3)
4.4 Structural Thermoplastics
64(1)
4.5 Epoxies
65(2)
4.6 Silicones
67(3)
4.7 Polyurethanes
70(1)
4.8 Filled Polymers
70(5)
4.8.1 Types of Fillers
70(3)
4.8.2 Filled Polyolefins
73(1)
4.8.3 Filled Fluorocarbons
73(1)
4.8.4 Filled High-Temperature Polymers
74(1)
4.8.5 Filled Epoxies for Laminates
74(1)
4.9 Summary
75(2)
References
75(2)
5 Low Dielectric Constant Ceramic Dielectrics
77(14)
5.1 Introduction to Ceramic Dielectrics
77(1)
5.2 Measurement
78(1)
5.3 Applications
78(2)
5.4 Silica and Silicates
80(3)
5.4.1 The Range of Si-O--Based Dielectric Materials by Using Silicates
81(2)
5.5 High-Temperature and High-Conductivity Materials
83(4)
5.5.1 Nitrides, Oxides, and Fluorides
83(1)
5.5.2 Alumina (Al2O3)
84(1)
5.5.3 Boron Nitride (BN)
85(1)
5.5.4 Beryllium Oxide (BeO)
86(1)
5.5.5 Aluminum Nitride (AlN)
86(1)
5.5.6 Diamond
87(1)
5.6 Dielectrics for Thick Film and Low Temperature Cofired Ceramic (LTCC) Applications
87(2)
5.7 Summary
89(2)
References
89(1)
Selected Bibliography
90(1)
6 High Dielectric Constant Dielectrics
91(10)
6.1 Introduction
91(1)
6.2 Dielectrics with Dielectric Constants in the Range 20 to 55
92(2)
6.3 The BaTi4O9/Ba2Ti9O20 System
94(1)
6.4 The Zirconium Titanate/Zirconium Tin Titanate System (ZrTiO4/(Zr,Sn)TiO4)
95(1)
6.5 Perovskite Materials
95(3)
6.6 High-Q Perovskites
98(1)
6.7 Temperature-Stable Dielectrics with Dielectric Constants Greater Than 55
99(3)
6.8 Commercially Available TTBs
102
References
103(1)
Selected Bibliography
104
7 Metals at Microwave Frequencies
101(20)
7.1 Introduction
107(1)
7.2 Application of Metals to Microwave Transmission Lines
108(1)
7.3 Copper
108(4)
7.4 Aluminum
112(1)
7.5 Silver
113(1)
7.6 Gold
114(1)
7.7 Relative Losses of Metals in Microstrip and Waveguide Transmission Lines
114(1)
7.8 Nickel
115(1)
7.9 Steels
116(1)
7.10 Magnetic Temperature-Compensating Alloys
116(1)
7.11 Metal Alloys with Low or Zero Expansion Coefficient
116(1)
7.12 Metal Plating on Plastics
117(4)
References
119(1)
Selected Bibliography
119(2)
8 Ferrite Devices
121(24)
8.1 Introduction
121(2)
8.2 Below-Resonance Junction Devices---Selecting the Correct Magnetization
123(4)
8.4 Magnetization Against Temperature
127(1)
8.5 Insertion Loss Considerations Below Resonance
128(2)
8.6 Power Handling in Below-Resonance Junction Devices
130(1)
8.7 Intermodulation in Below-Resonance Junction Devices
131(2)
8.8 Microstrip Below-Resonance Devices
133(1)
8.9 Below-Resonance Linear Devices
133(1)
8.10 Switching and Latching Devices
134(5)
8.11 Temperature Considerations
139(1)
8.13 Above-Resonance Devices
139(3)
8.14 Power Handling in Above-Resonance Devices
142(1)
8.15 Above-Resonance Phase Shifters
142(1)
8.14 Devices at Resonance
143(2)
References
143(1)
Selected Bibliography
144(1)
9 Resonators and Filters Based on Dielectrics
145(14)
9.1 Introduction
145(1)
9.2 Circuit-Based Resonators
145(2)
9.3 Coaxial Resonators
147(2)
9.4 TE-Based Dielectric Resonator Applications
149(2)
9.5 Dielectric Resonator Loaded Cavities
151(4)
9.6 Dielectric Support Materials
155(1)
9.7 TM Dielectric Resonator-Based Cavities
156(1)
9.8 Intermodulation in Dielectric Loaded Cavities
157(2)
References
158(1)
Selected Bibliography
158(1)
10 Antennas and Radomes
159(16)
10.1 Introduction
159(1)
10.2 Ferrite Rod Antennas for VHF and UHF
159(2)
10.3 Patch Antennas
161(2)
10.4 Ferrite Patch Antennas
163(1)
10.5 Planar Inverted-F Antennas (PIFA)
164(1)
10.6 Dielectric Resonator Antennas
164(1)
10.7 Metal Antennas
165(1)
10.8 Radomes
165(2)
10.8.1 Half-Wave Radomes
166(1)
10.8.2 A- and C-Sandwich Construction
167(1)
10.9 Foam Radome Materials
167(1)
10.10 Ceramic Materials
168(3)
10.11 Microwave and IR Transparent Radomes
171(1)
10.12 Absorbers for Antennas
172(1)
10.13 Phased-Array Antennas
172(3)
References
172(1)
Selected Bibliography
173(2)
11 Tunable Devices
175(16)
11.1 Introduction
175(1)
11.2 Magnetic Tuning
175(1)
11.3 Lumped Element Magnetically Tunable Filters
176(1)
11.4 Ferrite Phase Shifters
177(1)
11.5 Magnetically Tunable Microstrip Filters
178(1)
11.5.1 Magnetically Tunable Dielectric Resonator Filters
178(1)
11.6 Single-Crystal YIG Resonators
179(3)
11.7 Epitaxial Thin-Film Magnetically Tuned YIG Devices
182(1)
11.8 Ferroelectric-Tuned Devices
183(2)
11.9 Tunable MEMS Devices
185(1)
11.10 Low Temperature and Cryogenic Devices
186(5)
11.10.1 Magnetic Materials at Low Temperature
186(1)
11.10.2 Dielectrics at Low Temperature
187(1)
11.10.3 Superconductors at Microwave Frequencies
188(1)
References
188(3)
12 Measurement Techniques
191(20)
12.1 Introduction
191(1)
12.2 Dielectric Constant and Loss
191(8)
12.2.1 Perturbation Techniques
193(1)
12.2.2 Dielectric Properties Using Dielectric Resonators
194(3)
12.2.3 Dielectric Temperature Coefficients
197(1)
12.2.4 Low-Frequency Measurements of Dielectric Properties
197(1)
12.2.5 Split Resonator Technique
198(1)
12.3 Magnetization
199(4)
12.3.1 Vibrating Sample Magnetometer
200(1)
12.3.2 AC Magnetization
201(2)
12.4 Line Width Measurements
203(4)
12.4.1 Ferrimagnetic Resonance
203(2)
12.4.2 Spinwave Line Width
205(1)
12.4.3 Effective Line Width and Magnetic Losses
206(1)
12.5 Permeability and Magnetic Loss Spectrum
207(1)
12.6 Intermodulation and Third-Harmonic Distortion Measurement
208(1)
12.7 Density
209(2)
References
209(2)
About the Author 211(2)
Index 213
David Cruickshank is the director of engineering emeritus at TransTech Inc. in Adamstown, Maryland. The author of several conference proceedings in the microwave field, he earned his degree in physical chemistry from the University of Edinburgh.