|
1 Introduction to Microwave Imaging |
|
|
1 | (20) |
|
1.1 Electromagnetic Imaging |
|
|
1 | (1) |
|
1.2 Microwave Imaging Methods |
|
|
2 | (4) |
|
|
2 | (2) |
|
1.2.2 Microwave Tomography |
|
|
4 | (2) |
|
1.3 Qualitative Linear Inversion |
|
|
6 | (1) |
|
1.4 Quantitative Nonlinear Inversion |
|
|
6 | (3) |
|
|
7 | (1) |
|
1.4.2 Iterative Approaches Without Using Forward Solver |
|
|
8 | (1) |
|
1.4.3 Iterative Approaches Using Forward Solver |
|
|
9 | (1) |
|
1.5 Deterministic Approaches Based on Local Optimization |
|
|
9 | (1) |
|
1.6 Stochastic Approaches Based on Global Optimization |
|
|
10 | (1) |
|
|
11 | (1) |
|
|
11 | (2) |
|
|
13 | (8) |
|
|
14 | (7) |
|
2 Sequential Forward Solver |
|
|
21 | (18) |
|
|
21 | (3) |
|
2.1.1 Ill-Posedness of the Inverse Problem |
|
|
22 | (1) |
|
2.1.2 Nonlinearity of the Inverse Scattering Problem |
|
|
23 | (1) |
|
2.1.3 Inverse Scattering Problem from Theoretical Point of View |
|
|
24 | (1) |
|
|
24 | (1) |
|
2.3 Time Domain Algorithm |
|
|
25 | (1) |
|
2.3.1 Time Domain Forward Scattering Problem |
|
|
26 | (1) |
|
|
26 | (1) |
|
2.5 Fundamentals of FDTD Method (Yee Algorithm) |
|
|
27 | (5) |
|
2.6 Frequency-Dependent FDTD |
|
|
32 | (7) |
|
|
36 | (3) |
|
3 Global Optimization: Differential Evolution, Genetic Algorithms, Particle Swarm, and Hybrid Methods |
|
|
39 | (24) |
|
3.1 Global Optimization Methods |
|
|
39 | (1) |
|
3.2 Differential Evolution |
|
|
40 | (4) |
|
3.2.1 Hybrid Differential Evolution |
|
|
44 | (1) |
|
|
44 | (1) |
|
|
44 | (2) |
|
3.3.1 Hybrid Genetic Algorithms |
|
|
44 | (2) |
|
|
46 | (1) |
|
3.4 Particle Swarm Optimization |
|
|
46 | (17) |
|
3.4.1 Hybrid Particle Swarm Optimization |
|
|
51 | (2) |
|
3.4.2 Example of Microwave Tomography Using PSO and DE |
|
|
53 | (4) |
|
|
57 | (1) |
|
|
58 | (5) |
|
4 Sequential Optimization: Genetic Algorithm |
|
|
63 | (24) |
|
4.1 Genetic Algorithm (GA) |
|
|
63 | (7) |
|
|
63 | (1) |
|
4.1.2 GA Parameters for the Proposed MWT |
|
|
64 | (1) |
|
4.1.3 Selection, Crossover, and Mutation |
|
|
64 | (1) |
|
4.1.4 Population and Generation Sizes and Rates |
|
|
65 | (1) |
|
|
66 | (1) |
|
|
67 | (2) |
|
4.1.7 BGA with Knowledge About the Number of Scatterers |
|
|
69 | (1) |
|
|
70 | (2) |
|
4.2.1 Multi-view/Multi-illumination |
|
|
71 | (1) |
|
|
71 | (1) |
|
4.3 Dependent Regularization |
|
|
72 | (1) |
|
4.4 GA-Based Inverse Solver |
|
|
73 | (4) |
|
4.4.1 The GA Inversion Procedure |
|
|
74 | (1) |
|
4.4.2 Step I. Define Parameters |
|
|
75 | (1) |
|
4.4.3 Step II. Representation Scheme |
|
|
75 | (1) |
|
4.4.4 Step III. Initialization |
|
|
75 | (1) |
|
4.4.5 Step IV. Calculating the Fitness Function |
|
|
75 | (1) |
|
4.4.6 Step V. Saving the Fitness Values and Chromosomes |
|
|
75 | (1) |
|
4.4.7 Step VI. Selection, Evolution, and Mutation |
|
|
76 | (1) |
|
4.4.8 Step VII. Repeat the Procedure |
|
|
76 | (1) |
|
4.4.9 Example of GA Process |
|
|
76 | (1) |
|
4.5 Preliminary Validation |
|
|
77 | (10) |
|
4.5.1 I. Reconstruction Algorithm Using BGA |
|
|
77 | (1) |
|
|
78 | (2) |
|
4.5.3 Multiple Scatterers |
|
|
80 | (1) |
|
4.5.4 Dispersive Separated Scatterers |
|
|
80 | (2) |
|
4.5.5 Dispersive Multiple Adjacent Scatterers |
|
|
82 | (2) |
|
|
84 | (3) |
|
5 Inclusion of A Priori Information Using Neural Networks |
|
|
87 | (56) |
|
5.1 Hybrid GA Global Optimization and Neural Network Training |
|
|
87 | (2) |
|
5.2 Regularization Through Neural Network Classification |
|
|
89 | (2) |
|
5.3 Mathematical Formulation |
|
|
91 | (3) |
|
|
92 | (2) |
|
|
94 | (7) |
|
|
95 | (1) |
|
|
95 | (1) |
|
5.4.3 Neural Network Classifier |
|
|
96 | (4) |
|
5.4.4 Parameter Selection |
|
|
100 | (1) |
|
|
101 | (3) |
|
5.6 Reconstruction Results |
|
|
104 | (18) |
|
5.6.1 Reconstruction Results for the Samples Including Tumors |
|
|
113 | (4) |
|
5.6.2 Specificity and Sensitivity |
|
|
117 | (5) |
|
|
122 | (21) |
|
|
139 | (4) |
|
6 Parallel Forward Solver |
|
|
143 | (10) |
|
6.1 Parallel FDTD (PFDTD) |
|
|
143 | (4) |
|
6.2 Graphics Processing Unit Computing |
|
|
147 | (1) |
|
6.3 GPU Parallelization of FDTD Forward Solver |
|
|
147 | (6) |
|
6.3.1 FDTD GPU Acceleration Results |
|
|
150 | (2) |
|
|
152 | (1) |
|
7 Parallel Optimization Methods |
|
|
153 | (26) |
|
7.1 Survey of Parallel and Distributed Evolutionary Algorithms |
|
|
153 | (4) |
|
7.1.1 Parallel Genetic Algorithms |
|
|
154 | (1) |
|
7.1.2 Parallel Differential Evolution |
|
|
155 | (1) |
|
7.1.3 Parallel Particle Swarm Optimization |
|
|
155 | (2) |
|
7.2 Asynchronous Global Optimization |
|
|
157 | (4) |
|
7.2.1 Asynchronous Genetic Algorithms |
|
|
158 | (1) |
|
7.2.2 Asynchronous Particle Swarm Optimization |
|
|
159 | (1) |
|
7.2.3 Asynchronous Differential Evolution |
|
|
160 | (1) |
|
7.3 Implementation of PGA for Microwave Imaging |
|
|
161 | (3) |
|
7.3.1 Integrating PGA and PFDTD Algorithms |
|
|
162 | (1) |
|
7.3.2 Example of Image Reconstructing Using the PFDTD/PGA |
|
|
163 | (1) |
|
7.4 Parallel Particle Swarm Performance Analysis |
|
|
164 | (2) |
|
7.5 Microwave Tomography Imaging for Breast Cancer Detection Using Parallel FDTD/GA |
|
|
166 | (4) |
|
7.5.1 Numerical Breast Phantom |
|
|
166 | (2) |
|
|
168 | (2) |
|
|
170 | (9) |
|
7.6.1 Optimization Procedure |
|
|
173 | (2) |
|
|
175 | (4) |
|
8 Benchmarking Parallel Evolutionary Algorithms |
|
|
179 | (20) |
|
8.1 Simulating Asynchronous Optimization |
|
|
179 | (6) |
|
|
185 | (7) |
|
8.2.1 Optimization and Test Function Parameters |
|
|
185 | (1) |
|
8.2.2 Simulating Homogeneous Environments |
|
|
185 | (7) |
|
8.2.3 Simulating Heterogeneous Environments |
|
|
192 | (1) |
|
|
192 | (7) |
|
|
198 | (1) |
Index |
|
199 | |