Atjaunināt sīkdatņu piekrišanu

E-grāmata: Microwaves Photonic Links: Components and Circuits

  • Formāts: EPUB+DRM
  • Izdošanas datums: 01-Mar-2013
  • Izdevniecība: ISTE Ltd and John Wiley & Sons Inc
  • Valoda: eng
  • ISBN-13: 9781118586358
Citas grāmatas par šo tēmu:
  • Formāts - EPUB+DRM
  • Cena: 236,68 €*
  • * ši ir gala cena, t.i., netiek piemērotas nekādas papildus atlaides
  • Ielikt grozā
  • Pievienot vēlmju sarakstam
  • Šī e-grāmata paredzēta tikai personīgai lietošanai. E-grāmatas nav iespējams atgriezt un nauda par iegādātajām e-grāmatām netiek atmaksāta.
  • Bibliotēkām
  • Formāts: EPUB+DRM
  • Izdošanas datums: 01-Mar-2013
  • Izdevniecība: ISTE Ltd and John Wiley & Sons Inc
  • Valoda: eng
  • ISBN-13: 9781118586358
Citas grāmatas par šo tēmu:

DRM restrictions

  • Kopēšana (kopēt/ievietot):

    nav atļauts

  • Drukāšana:

    nav atļauts

  • Lietošana:

    Digitālo tiesību pārvaldība (Digital Rights Management (DRM))
    Izdevējs ir piegādājis šo grāmatu šifrētā veidā, kas nozīmē, ka jums ir jāinstalē bezmaksas programmatūra, lai to atbloķētu un lasītu. Lai lasītu šo e-grāmatu, jums ir jāizveido Adobe ID. Vairāk informācijas šeit. E-grāmatu var lasīt un lejupielādēt līdz 6 ierīcēm (vienam lietotājam ar vienu un to pašu Adobe ID).

    Nepieciešamā programmatūra
    Lai lasītu šo e-grāmatu mobilajā ierīcē (tālrunī vai planšetdatorā), jums būs jāinstalē šī bezmaksas lietotne: PocketBook Reader (iOS / Android)

    Lai lejupielādētu un lasītu šo e-grāmatu datorā vai Mac datorā, jums ir nepieciešamid Adobe Digital Editions (šī ir bezmaksas lietotne, kas īpaši izstrādāta e-grāmatām. Tā nav tas pats, kas Adobe Reader, kas, iespējams, jau ir jūsu datorā.)

    Jūs nevarat lasīt šo e-grāmatu, izmantojot Amazon Kindle.

This book presents the electrical models for the different elements of a photonic microwave link like lasers, external modulators, optical fibers, photodiodes and phototransistors. The future trends of these components are also introduced: lasers to VCSEL, external modulators to electro-absorption modulators, glass optical fibers to plastic optical fibers, photodiodes to UTC photodiodes or phototransistors. It also describes an original methodology to evaluate the performance of a microwave photonic link, based on the developed elcetrical models, that can be easily incorporated in commercial electrical circuits simulation software to simulate this complete link.
Preface xiii
Abbrevation Glossary xvii
Chapter 1 General Points
1(14)
1.1 Microwave photonic links
1(3)
1.2 Link description
4(1)
1.3 Signal to transmit
5(2)
1.3.1 Microwave signal
5(1)
1.3.2 Microwave carrier for a digital signal
5(1)
1.3.3 UWB signal
6(1)
1.3.4 Optical carrier
6(1)
1.3.5 Summary
6(1)
1.4 Limitations of microwave photonic links
7(6)
1.4.1 Limitations due to the materials constituting the different elements
7(1)
1.4.2 Noise sources in microwave photonic links
8(5)
1.4.3 Nonlinearities
13(1)
1.5 The components and characteristics of microwave photonic links
13(2)
Chapter 2 Generation and Modulation of Light
15(78)
2.1 Laser
15(34)
2.1.1 General points
15(2)
2.1.2 Semiconductor laser structure and optical gain in the active zone
17(2)
2.1.3 Operation of a Fabry-Perot laser
19(2)
2.1.4 Optical confinement factor and rate equations
21(3)
2.1.5 Static mode of laser operation (or CW mode of operation)
24(2)
2.1.6 Dynamic mode of laser operation: RF small signal response
26(2)
2.1.7 RIN laser noise
28(3)
2.1.8 Increase in 1/f of RIN and superposition of a small signal and noise
31(1)
2.1.9 Different laser configurations
32(9)
2.1.10 CAD laser models
41(6)
2.1.11 Laser measurements and temperature stabilization
47(2)
2.2 Electro-optic modulator: EOM
49(26)
2.2.1 General physical principles
50(1)
2.2.2 Pockels or linear electro-optical effect
50(3)
2.2.3 Mach-Zehnder electro-optic modulator
53(2)
2.2.4 Single-Drive MZM: one driving electrode
55(14)
2.2.5 Dual-drive MZM: two driving electrodes
69(2)
2.2.6 Real Mach-Zehnder modulator: characteristics and performances
71(2)
2.2.7 Mach-Zehnder modulator technology
73(2)
2.3 Electro-absorption modulator: EAM
75(18)
2.3.1 Electro-absorption effect
75(5)
2.3.2 FKE
80(1)
2.3.3 Stark effect
80(2)
2.3.4 Quantum well structures
82(1)
2.3.5 MEA operation
82(3)
2.3.6 Characteristics of an EAM
85(1)
2.3.7 EML: EAM integrated to a DFB laser
86(1)
2.3.8 EAM electrical modeling for ultra-fast signal simulation
87(6)
Chapter 3 Optical Fibers and Amplifiers
93(44)
3.1 Optical fibers
93(25)
3.1.1 General
93(3)
3.1.2 Material attenuation
96(2)
3.1.3 Material refraction index and dispersion
98(2)
3.1.4 Total reflection, numerical aperture, transmitted maximum frequency
100(5)
3.1.5 Step-index fiber
105(2)
3.1.6 Graded index fiber
107(3)
3.1.7 Single-mode fiber
110(4)
3.1.8 Plastic optical fibers
114(4)
3.2 Optical amplifiers
118(4)
3.2.1 Semiconductor optical amplifiers: SOA
119(1)
3.2.2 EDFAs
120(2)
3.3 Appendix: modal analysis of propagation in a fiber
122(15)
3.3.1 Maxwell equations
122(1)
3.3.2 Maxwell equations in a cylindrical fiber
123(4)
3.3.3 Continuity and characteristic equation conditions
127(1)
3.3.4 Research of different propagation modes
128(4)
3.3.5 Approximation of linearly polarized modes
132(5)
Chapter 4 Photodetectors
137(56)
4.1 Photodetector definition
137(1)
4.2 Photodiodes
138(25)
4.2.1 Presentation
138(1)
4.2.2 Light absorption in a semiconductor
139(3)
4.2.3 p-i-n photodiode
142(3)
4.2.4 Metal-semiconductor-metal or MSM photodiode
145(2)
4.2.5 Equivalent circuits for p-i-n and MSM photodiodes
147(1)
4.2.6 Nonlinearities
147(2)
4.2.7 UTC photodiodes
149(1)
4.2.8 Charge compensation
150(1)
4.2.9 Partially depleted absorption zone
151(1)
4.2.10 Lateral lighting
152(1)
4.2.11 Lateral lighting: progressive wave structure
153(3)
4.2.12 Lateral lighting: periodic structures
156(1)
4.2.13 Resonant optical cavity photodetector
157(3)
4.2.14 Diluted waveguides and evanescent mode coupling
160(1)
4.2.15 Summary
161(2)
4.3 Phototransistors
163(21)
4.3.1 Bipolar or field-effect phototransistors?
163(2)
4.3.2 GaAlAs/GaAs and InGaP/GaAs phototransistors
165(2)
4.3.3 InP/InGaAs phototransistors
167(5)
4.3.4 Si/SiGe phototransistors
172(4)
4.3.5 Resonant optical cavities for phototransistors
176(1)
4.3.6 Phototransistor simulations and models
176(4)
4.3.7 Influence of the base load impedance
180(3)
4.3.8 Summary
183(1)
4.4 Appendix
184(9)
4.4.1 Lattice matched layers pseudomorphic layer, metamorphic layer
184(2)
4.4.2 Velocity overshoot effect
186(2)
4.4.3 Heterojunction bipolar phototransistor
188(5)
Chapter 5 Performance of Microwave Photonic Links
193(74)
5.1 Microwave photonic links: diagrams and definitions
193(8)
5.1.1 Direct modulation link diagram and definitions
193(4)
5.1.2 External modulation link diagram and definitions
197(1)
5.1.3 Simplified link diagram and first gain computation
198(3)
5.2 Optomicrowave S-parameters and gains of each photonic link component
201(9)
5.2.1 Introduction
201(1)
5.2.2 Optomicrowave laser S-parameters and optomicrowave gain
202(1)
5.2.3 Optomicrowave optical fiber S-parameters and optomicrowave gain
203(1)
5.2.4 Photodiode optomicrowave S-parameters and gain
204(1)
5.2.5 Localized component external modulator optomicrowave S-parameters and gain
205(2)
5.2.6 Distributed component external modulator optomicrowave S-parameters and gain
207(2)
5.2.7 Summary of all S-parameters and optomicrowave gain
209(1)
5.3 Microwave photonic links optomicrowave S-parameters and gains
210(8)
5.3.1 Direct modulation microwave photonic link S-parameters
210(1)
5.3.2 Direct modulation microwave photonic link gains
211(1)
5.3.3 Localized external modulator microwave photonic link S-parameters
212(1)
5.3.4 Localized external modulator microwave photonic link gains
213(1)
5.3.5 Distributed external modulator microwave photonic link S-parameters
213(1)
5.3.6 Distributed external modulator microwave photonic link gains
214(1)
5.3.7 Link gain computation generalization
215(3)
5.4 Comparison of different link gains
218(3)
5.4.1 Direct modulation link gain computation
218(1)
5.4.2 Localized external modulator link gain computation
219(1)
5.4.3 Distributed external modulator link gain computations
220(1)
5.5 Direct modulation microwave photonic link optomicrowave noise figures
221(6)
5.5.1 Link noise figure diagram and computation method
221(2)
5.5.2 Laser noise figure
223(1)
5.5.3 Optical fiber noise figure
223(1)
5.5.4 Photodiode noise figure
224(1)
5.5.5 Direct modulation link noise figure
224(1)
5.5.6 Matching effect at the input of a direct modulation link
225(1)
5.5.7 Generalization of a link noise figure computation
226(1)
5.6 External modulation microwave photonic link optomicrowave noise figure
227(5)
5.6.1 Equivalent diagram and steps recall
227(1)
5.6.2 Localized external modulator noise figure
227(1)
5.6.3 Distributed external modulator noise figure
228(2)
5.6.4 New evaluation of photodetector noise figure
230(1)
5.6.5 Localized external modulator microwave photonic link noise figure
231(1)
5.6.6 Matched input localized external modulator microwave photonic link noise figure
231(1)
5.6.7 Distributed external modulator microwave photonic link noise figure
232(1)
5.7 Comparisons of different link noise figures
232(9)
5.7.1 Evaluation of direct modulation link noise figure
232(2)
5.7.2 Evaluation of localized external modulator link noise figure
234(1)
5.7.3 Evaluation of matched input localized external modulator link noise figure
235(1)
5.7.4 Evaluation of distributed external modulator link noise figures
236(1)
5.7.5 Output noise power
237(2)
5.7.6 Some effectively measured noise figure values
239(2)
5.8 Microwave photonic link nonlinearity: distortion phenomena
241(5)
5.8.1 Single microwave signal nonlinearity
241(1)
5.8.2 Several input microwave signals nonlinearity
242(2)
5.8.3 Wideband input signal nonlinearity
244(1)
5.8.4 Nonlinearity combination of microwave photonic link components
245(1)
5.9 Microwave photonic link interference-free dynamic range
246(4)
5.9.1 Single input signal microwave photonic link interference-free dynamic range
246(1)
5.9.2 Several-input signal microwave photonic link interference-free dynamic range
247(2)
5.9.3 Some effectively measured interference-free dynamic range values
249(1)
5.10 Appendix
250(17)
5.10.1 Relation between parameters S, Z, Y, and ABCD
250(1)
5.10.2 Equation choice for the computation of microwave photonic link optomicrowave noise figure
251(10)
5.10.3 Calculation of a two-input signal microwave photonic link interference-free dynamic range
261(6)
Chapter 6 Complement to Microwave Photonic Link Performances
267(22)
6.1 Microwave signal attenuation during double sideband modulation
267(6)
6.1.1 Double sideband modulation recall
267(1)
6.1.2 Recall of single-mode optical fiber propagation characteristics
268(2)
6.1.3 Optical fiber double sideband modulated signal propagation
270(1)
6.1.4 Double sideband-modulated signal photodetection at the optical fiber output
271(2)
6.2 Modulator structures for optical carrier or high and low sideband removal
273(7)
6.2.1 Optical modulation recall
273(1)
6.2.2 Single sideband or carrier suppression optical modulators
274(3)
6.2.3 Carrier suppression and single sideband optical modulator
277(3)
6.3 Degradation of a microwave signal spectral purity by an optical link
280(9)
6.3.1 Phenomenon description
280(1)
6.3.2 Some definitions concerning the noise around a microwave carrier
281(1)
6.3.3 Amplitude and phase noise in an optical link
282(2)
6.3.4 Phase noise computation of a microwave signal transmitted by an optical link
284(2)
6.3.5 Amplitude noise computation of a microwave signal transmitted by an optical link
286(3)
Chapter 7 Electronic Amplifiers in Microwave Photonic Links
289(32)
7.1 Electronic amplifiers in optical links
289(1)
7.2 Amplifiers in the optical link emitter
289(4)
7.2.1 Different roles of electronic amplifiers on optical emitter
289(1)
7.2.2 Emission: modulator or laser input amplifiers
290(3)
7.3 Receiver: amplifiers at the photodetector output
293(7)
7.3.1 General points
293(1)
7.3.2 Transimpedance amplifiers
294(2)
7.3.3 Distributed amplifiers
296(2)
7.3.4 Combination of transimpedance and distributed amplifiers
298(1)
7.3.5 Narrowband amplifiers
298(1)
7.3.6 Preamplifier after a phototransistor
299(1)
7.3.7 Other circuits after a phototransistor
299(1)
7.4 Appendix: analog and microwave amplifiers
300(21)
7.4.1 General points
300(1)
7.4.2 Analog amplifiers
300(4)
7.4.3 Microwave amplifier: expression of transistor reflection coefficients
304(2)
7.4.4 Microwave amplifiers: gain expressions
306(1)
7.4.5 Unilateralized transistor model: two-port network matching computation
307(5)
7.4.6 Non-unilateralized transistor: general case of a transistor with S12 ≠ 0
312(1)
7.4.7 Low noise amplifier
313(2)
7.4.8 General models of low signal microwave amplifiers
315(6)
Chapter 8 Simulation and Measurement of Microwave Photonic Links
321(46)
8.1 State of the art and context
321(3)
8.1.1 Objective
321(1)
8.1.2 Choice of simulation software
321(1)
8.1.3 Different ADS simulation techniques
322(2)
8.2 Microwave optical link models
324(13)
8.2.1 Two-port network approach
324(1)
8.2.2 Electro-optic transducer: the laser
325(4)
8.2.3 Transmission guiding: the optical fiber
329(5)
8.2.4 The optoelectric transducer: the photodiode
334(3)
8.3 Nonlinearity effects in the link
337(3)
8.3.1 Nonlinearity sources
337(1)
8.3.2 1 dB compression point and first-order dynamic of the link
338(1)
8.3.3 Third-order intermodulation and third-order interference-free dynamic range of the link
339(1)
8.4 Link noise modeling
340(8)
8.4.1 Noise in the laser
340(2)
8.4.2 The optical fiber
342(1)
8.4.3 Noise in the photodiode
342(1)
8.4.4 Direct modulation link noise figure
343(1)
8.4.5 Noise power at the receiver
344(4)
8.5 Other types of modulation of signals transmitted on an optical fiber
348(13)
8.5.1 Ultra-wideband signal modulation
348(5)
8.5.2 External modulation
353(5)
8.5.3 Generation of microwave signal by frequency beating
358(3)
8.6 Conclusion
361(1)
8.7 Appendix
362(5)
8.7.1 MB-OOK modulation
362(1)
8.7.2 OFDM modulation
363(4)
Bibliography 367(26)
Index 393
Christian Rumelhard, Catherine Algani and Anne-Laure Billabert, CNAM, France.