Atjaunināt sīkdatņu piekrišanu

E-grāmata: Military Applications of Data Analytics

Edited by (Harrisburg University of Science and Technology)
  • Formāts: 218 pages
  • Sērija : Data Analytics Applications
  • Izdošanas datums: 09-Oct-2018
  • Izdevniecība: Auerbach Publishers Inc.
  • ISBN-13: 9780429818271
  • Formāts - PDF+DRM
  • Cena: 56,34 €*
  • * ši ir gala cena, t.i., netiek piemērotas nekādas papildus atlaides
  • Ielikt grozā
  • Pievienot vēlmju sarakstam
  • Šī e-grāmata paredzēta tikai personīgai lietošanai. E-grāmatas nav iespējams atgriezt un nauda par iegādātajām e-grāmatām netiek atmaksāta.
  • Formāts: 218 pages
  • Sērija : Data Analytics Applications
  • Izdošanas datums: 09-Oct-2018
  • Izdevniecība: Auerbach Publishers Inc.
  • ISBN-13: 9780429818271

DRM restrictions

  • Kopēšana (kopēt/ievietot):

    nav atļauts

  • Drukāšana:

    nav atļauts

  • Lietošana:

    Digitālo tiesību pārvaldība (Digital Rights Management (DRM))
    Izdevējs ir piegādājis šo grāmatu šifrētā veidā, kas nozīmē, ka jums ir jāinstalē bezmaksas programmatūra, lai to atbloķētu un lasītu. Lai lasītu šo e-grāmatu, jums ir jāizveido Adobe ID. Vairāk informācijas šeit. E-grāmatu var lasīt un lejupielādēt līdz 6 ierīcēm (vienam lietotājam ar vienu un to pašu Adobe ID).

    Nepieciešamā programmatūra
    Lai lasītu šo e-grāmatu mobilajā ierīcē (tālrunī vai planšetdatorā), jums būs jāinstalē šī bezmaksas lietotne: PocketBook Reader (iOS / Android)

    Lai lejupielādētu un lasītu šo e-grāmatu datorā vai Mac datorā, jums ir nepieciešamid Adobe Digital Editions (šī ir bezmaksas lietotne, kas īpaši izstrādāta e-grāmatām. Tā nav tas pats, kas Adobe Reader, kas, iespējams, jau ir jūsu datorā.)

    Jūs nevarat lasīt šo e-grāmatu, izmantojot Amazon Kindle.

Military organizations around the world are normally huge producers and consumers of data. Accordingly, they stand to gain from the many benefits associated with data analytics. However, for leaders in defense organizationseither government or industryaccessible use cases are not always available. This book presents a diverse collection of cases that explore the realm of possibilities in military data analytics. These use cases explore such topics as:











Context for maritime situation awareness Data analytics for electric power and energy applications Environmental data analytics in military operations Data analytics and training effectiveness evaluation Harnessing single board computers for military data analytics Analytics for military training in virtual reality environments

A chapter on using single board computers explores their application in a variety of domains, including wireless sensor networks, unmanned vehicles, and cluster computing. The investigation into a process for extracting and codifying expert knowledge provides a practical and useful model for soldiers that can support diagnostics, decision making, analysis of alternatives, and myriad other analytical processes. Data analytics is seen as having a role in military learning, and a chapter in the book describes the ongoing work with the United States Army Research Laboratory to apply data analytics techniques to the design of courses, evaluation of individual and group performances, and the ability to tailor the learning experience to achieve optimal learning outcomes in a minimum amount of time. Another chapter discusses how virtual reality and analytics are transforming training of military personnel. Virtual reality and analytics are also transforming monitoring, decision making, readiness, and operations.

Military Applications of Data Analytics brings together a collection of technical and application-oriented use cases. It enables decision makers and technologists to make connections between data analytics and such fields as virtual reality and cognitive science that are driving military organizations around the world forward.
Preface vii
Acknowledgments ix
Editor xi
Contributors xiii
1 Bayesian Networks for Descriptive Analytics in Military Equipment Applications
1(28)
David Aebischer
2 Network Modeling and Analysis of Data and Relationships: Developing Cyber and Complexity Science
29(18)
Chris Arney
Natalie Vanatta
Matthew Sobiesk
3 Context for Maritime Situation Awareness
47(16)
Anne-Laure Jousselme
Karna Bryan
4 Harnessing Single Board Computers for Military Data Analytics
63(16)
Suzanne J. Matthews
5 Data Analytics and Training Effectiveness Evaluation
79(18)
Michael Smith
Susan Dass
Clarence Dillon
6 Data Analytics for Electric Power and Energy Applications
97(16)
Aaron St. Leger
7 The Evolution of Environmental Data Analytics in Military Operations
113(16)
Ralph O. Stoffler
8 Autoregressive Bayesian Networks for Information Validation and Amendment in Military Applications
129(22)
Pablo Ibarguengoytia
Javier Herrera-Vega
Uriel A. Garcia
L. Enrique Sucar
Eduardo F. Morales
9 Developing Cyber-Personas from Syslog Files for Insider Threat Detection: A Feasibility Study
151(16)
Kevin Purcell
Sridhar Reddy Ravula
Ziyuan Huang
Mark Newman
Joshua Rykowski
Kevin Huggins
10 Analytics for Military Training in Virtual Reality Environments
167(20)
Miguel Perez-Ramf Rez
Benjamin Eddie Zayas-Perez
Jose Alberto Hernandez-Aguilar
Norma Josefina Ontiveros-Hernandez
Index 187
Kevin Huggins, PhD, is professor of Computer Science and Data Analytics at Harrisburg University of Science and Technology, Harrisburg, Pennsylvania. He is also a retired military officer who spent the early part of his career in military intelligence, with extensive experience in Latin America. The remainder of his career was spent in academia, primarily as a faculty member in the Department of Electrical Engineering and Computer Science at the U.S. Military Academy. While there, Dr. Huggins served as the director of Research in Network Science as well as the director of the Information Technology Program. Additionally, Dr. Huggins was a visiting scientist at the École de Techniques Avancées in Paris, France, where he studied parallel algorithms for multiprocessor system-on-chip (MPSoC) architectures. His current research interest lies at the intersection of data science and information security, exploring novel ways of securing computing systems by leveraging the enormous amounts of available data. He holds a PhD in computer science from Mines Paris Tech.