Atjaunināt sīkdatņu piekrišanu

E-grāmata: Mineral Scales and Deposits: Scientific and Technological Approaches

Edited by (Professor, Department of Chemistry, University of Crete, Heraklion, Greece), Edited by (School of Arts and Sciences, Walsh University, N. Canton, OH, USA)
  • Formāts: PDF+DRM
  • Izdošanas datums: 21-May-2015
  • Izdevniecība: Elsevier Science Ltd
  • Valoda: eng
  • ISBN-13: 9780444627520
  • Formāts - PDF+DRM
  • Cena: 203,82 €*
  • * ši ir gala cena, t.i., netiek piemērotas nekādas papildus atlaides
  • Ielikt grozā
  • Pievienot vēlmju sarakstam
  • Šī e-grāmata paredzēta tikai personīgai lietošanai. E-grāmatas nav iespējams atgriezt un nauda par iegādātajām e-grāmatām netiek atmaksāta.
  • Formāts: PDF+DRM
  • Izdošanas datums: 21-May-2015
  • Izdevniecība: Elsevier Science Ltd
  • Valoda: eng
  • ISBN-13: 9780444627520

DRM restrictions

  • Kopēšana (kopēt/ievietot):

    nav atļauts

  • Drukāšana:

    nav atļauts

  • Lietošana:

    Digitālo tiesību pārvaldība (Digital Rights Management (DRM))
    Izdevējs ir piegādājis šo grāmatu šifrētā veidā, kas nozīmē, ka jums ir jāinstalē bezmaksas programmatūra, lai to atbloķētu un lasītu. Lai lasītu šo e-grāmatu, jums ir jāizveido Adobe ID. Vairāk informācijas šeit. E-grāmatu var lasīt un lejupielādēt līdz 6 ierīcēm (vienam lietotājam ar vienu un to pašu Adobe ID).

    Nepieciešamā programmatūra
    Lai lasītu šo e-grāmatu mobilajā ierīcē (tālrunī vai planšetdatorā), jums būs jāinstalē šī bezmaksas lietotne: PocketBook Reader (iOS / Android)

    Lai lejupielādētu un lasītu šo e-grāmatu datorā vai Mac datorā, jums ir nepieciešamid Adobe Digital Editions (šī ir bezmaksas lietotne, kas īpaši izstrādāta e-grāmatām. Tā nav tas pats, kas Adobe Reader, kas, iespējams, jau ir jūsu datorā.)

    Jūs nevarat lasīt šo e-grāmatu, izmantojot Amazon Kindle.

Mineral Scales and Deposits: Scientific and Technological Approaches presents, in an integrated way, the problem of scale deposits (precipitation/crystallization of sparingly-soluble salts) in aqueous systems, both industrial and biological.It covers several fundamental aspects, also offering an applications’ perspective, with the ultimate goal of helping the reader better understand the underlying mechanisms of scale formation, while also assisting the user/reader to solve scale-related challenges.It is ideal for scientists/experts working in academia, offering a number of crystal growth topics with an emphasis on mechanistic details, prediction modules, and inhibition/dispersion chemistry, amongst others. In addition, technologists, consultants, plant managers, engineers, and designers working in industry will find a field-friendly overview of scale-related challenges and technological options for their mitigation.Provides a unique, detailed focus on scale deposits, includes the basic science and mechanisms of scale formationPresent a field-friendly overview of scale-related challenges and technological options for their mitigationCorrelates chemical structure to performanceProvides guidelines for easy assessment of a particular case, also including solutionsIncludes an extensive list of industrial case studies for reference

Papildus informācija

All fundamental and applications aspects of scale deposits in industrial water systems and selected biological systems, with formation mechanisms and prevention methods
List of Contributors
xvii
Preface xix
Biographies xxiii
Acknowledgments xxv
Section I Fouling and Scaling Fundamentals
1 Water-Formed Scales and Deposits: Types, Characteristics, and Relevant Industries
3(22)
Jitka MacAdam
Peter Jarvis
1.1 Introduction
3(6)
1.1.1 Background
3(1)
1.1.2 Main Factors Affecting Scale Formation
3(2)
1.1.3 Main Industries Affected
5(4)
1.2 Calcium Carbonate
9(4)
1.2.1 Background and Chemistry of Calcium Carbonate
9(3)
1.2.2 Factors and Conditions Affecting the Formation of Calcium Carbonate
12(1)
1.2.3 Relevant Industries
13(1)
1.3 Calcium and Barium Sulfates
13(2)
1.3.1 Background
13(1)
1.3.2 Factors and Conditions Affecting the Formation of Calcium Sulfate
13(1)
1.3.3 Relevant Industries
14(1)
1.3.4 Barium Sulfate
14(1)
1.4 Magnesium-Based Scales
15(1)
1.4.1 Background
15(1)
1.4.2 Factors and Conditions Affecting the Formation of Magnesium Scales
15(1)
1.4.3 Relevant Industries
16(1)
1.5 Silica Scales
16(1)
1.5.1 Background
16(1)
1.5.2 Factors and Conditions Affecting the Formation of Silica Scales
16(1)
1.5.3 Relevant Industries
17(1)
1.6 Examples of Other Scales
17(3)
1.6.1 Iron Scales
17(1)
1.6.2 Struvite and Calcium Phosphate
18(2)
1.6.3 Lead-Based Scale
20(1)
1.7 Summary
20(5)
References
21(4)
2 Water Chemistry and Its Role in Industrial Water Systems
25(22)
Petros G. Koutsoukos
2.1 Water as the Universal Solvent
25(1)
2.2 Thermodynamics of Solubility
26(3)
2.3 Dissolved, Scale-Forming Cations and Anions
29(2)
2.4 The Formation of Ion Pairs
31(1)
2.5 Suspended Solids and Their Effect on Deposit Formation
32(2)
2.6 The Nucleation Process
34(2)
2.7 Factors that Affect Crystal Growth
36(5)
2.8 Scale Deposition and Adhesion
41(3)
2.9 Concluding Remarks
44(3)
Acknowledgment
44(1)
References
44(3)
3 Mechanisms of Scale Formation and Inhibition
47(38)
Tung A. Hoang
3.1 Scale: Definition and Influence on Industrial Processes
47(1)
3.1.1 What Is Scale?
47(1)
3.1.2 Influence of Scaling on Industrial Processes
47(1)
3.2 Theoretical Background of Scaling
48(8)
3.2.1 Solid Crystals
48(1)
3.2.2 Supersaturated Solution
49(1)
3.2.3 Scaling Process
50(1)
3.2.4 Mechanism of Scale Formation
51(5)
3.3 Scaling in Flow Systems
56(1)
3.4 Factors Affecting the Nucleation Rates
57(6)
3.4.1 Supersaturation
57(1)
3.4.2 Contact Time
58(1)
3.4.3 Hydrodynamic Factors
59(1)
3.4.4 Surface Roughness and Materials
60(1)
3.4.5 Temperature
61(2)
3.5 Scale Inhibition by Chemical Additives
63(4)
3.5.1 Effects of Additives on Scale Formation
63(3)
3.5.2 Effects of Additives on Scale Morphology
66(1)
3.6 Scale---Inhibitor Interface
67(4)
3.6.1 Location of Inhibitor at the Surface
67(2)
3.6.2 Chemical Bonding of Inhibitors at the Surface
69(2)
3.7 How Is Inhibition Performance Quantified?
71(14)
3.7.1 Inhibiting Effects
71(1)
3.7.2 Factors That Influence Scale Inhibition
71(5)
3.7.3 Langmuir Adsorption Isotherms
76(2)
Nomenclature
78(1)
General
78(1)
Creek Symbols
79(1)
References
79(6)
4 Corrosion Inhibitors in Cooling Water Systems
85(22)
Alexander Chirkunov
Yurii Kuznetsov
4.1 Introduction
85(1)
4.2 Inorganic Corrosion Inhibitors
86(3)
4.3 Organic Corrosion Inhibitors
89(11)
4.4 Industrial Aspects of Corrosion Inhibitors
100(1)
4.5 Conclusion
101(6)
Nomenclature
101(1)
References
101(6)
5 The Mineralogy of Microbiologically Influenced Corrosion
107(16)
Brenda J. Little
Tammie L. Gerke
Richard I. Ray
Jason S. Lee
5.1 Introduction
107(1)
5.2 Passive Alloys
108(4)
5.2.1 Titanium
108(1)
5.2.2 Ni---Cr---Mo Alloys
108(1)
5.2.3 Stainless Steels
108(3)
5.2.4 Aluminum and Aluminum Alloys
111(1)
5.3 Active Metals
112(6)
5.3.1 Iron and Low-Alloy Steel
112(5)
5.3.2 Copper and Nickel
117(1)
5.4 Case Studies
118(1)
5.5 Summary
119(4)
Acknowledgment
119(1)
References
120(3)
6 Biofouling in Industrial Water Systems
123(18)
Toleti Subba Rao
6.1 Industrial Water Systems: An Overview
123(1)
6.2 Types of Cooling Systems
124(1)
6.2.1 Once-through Cooling System
124(1)
6.2.2 Open Recirculating Cooling System
125(1)
6.2.3 Closed Recirculating Cooling System
125(1)
6.3 Industrial Implications of Biofilms and Biofouling
125(1)
6.4 Fundamentals of Biofilm Formation
126(3)
6.5 What Is Biofouling?
129(2)
6.6 Biofouling at a Coastal Power Plant
131(4)
6.7 Biofouling Control in Industrial Systems
135(3)
6.7.1 Biofouling Control
135(1)
6.7.2 Macrofouling Control
135(2)
6.7.3 Target Chlorination
137(1)
6.7.4 Pulse Chlorination
137(1)
6.7.5 Microfouling/Slime Control
138(1)
6.8 Conclusion
138(3)
Acknowledgment
138(1)
References
138(3)
7 Particulate Matter: Interfacial Properties, Fouling, and Its Mitigation
141(28)
Salim N. Kazi
7.1 Introduction
141(1)
7.2 Fouling
142(2)
7.2.1 Categories of Fouling
143(1)
7.3 The Fouling Process
144(1)
7.3.1 Initiation
144(1)
7.3.2 Transport
144(1)
7.3.3 Attachment
145(1)
7.3.4 Removal
145(1)
7.3.5 Aging
145(1)
7.3.6 Change in Deposition Thickness with Time
145(1)
7.3.7 Composite Fouling
145(1)
7.4 Effects of Fouling
145(3)
7.4.1 Effect of Fouling on Heat Exchanger Design
146(1)
7.4.2 Fouling Effect on Heat Transport
147(1)
7.4.3 Effect of Fouling on Pressure Drop
148(1)
7.5 Conditions Influencing Fouling
148(1)
7.6 Particle Transportation, Adhesion, and Fouling Interface
149(3)
7.7 Heat Exchanger Type, Geometry and Process Fluid Influencing Fouling
152(1)
7.8 Fouling Models
152(1)
7.9 Cost Imposed due to Fouling
153(1)
7.10 Fouling Mitigation
154(9)
7.10.1 Use of Additives in Fouling Mitigation
155(5)
7.10.2 Mitigation of Fouling by Other Methods
160(2)
7.10.3 Fouling Mitigation on Different Heat Exchanging Surfaces
162(1)
7.11 Summary
163(6)
Nomenclature
163(1)
References
164(5)
8 Water Treatment Chemicals: Types, Solution Chemistry, and Applications
169(24)
Radisav D. Vidic
Wenshi Liu
Heng Li
Can He
8.1 Introduction
169(1)
8.2 Role of Antiscalants
169(3)
8.2.1 Effect of Antiscalants on Mineral Precipitation
169(3)
8.2.2 Effect of Antiscalants on Mineral Deposition
172(1)
8.3 Antiscalant Selection
172(4)
8.3.1 Static Beaker Test
173(1)
8.3.2 Water Recirculating System
173(1)
8.3.3 Water Recirculating System with Heated Surface
174(1)
8.3.4 Electrochemical Impedance Spectroscopy
175(1)
8.3.5 Dynamic Tube-Blocking Test
176(1)
8.4 Scale Formation and Growth
176(7)
8.4.1 Nucleation
176(3)
8.4.2 Inhibition of Nucleation
179(1)
8.4.3 Inhibition of Scale Growth
179(2)
8.4.4 Inhibition of Particulate Fouling
181(2)
8.5 Case Studies
183(4)
8.5.1 Cooling Towers: Mineral Scaling Mitigation in Cooling Systems Using Secondary-Treated MWW
183(3)
8.5.2 Oil and Gas Industry: Inhibition of Barium Sulfate Scaling on the Production Casing during Unconventional Shale Gas Extraction
186(1)
8.5.3 Water Treatment: Scaling Control in RO Desalination
187(1)
8.6 Summary
187(6)
Nomenclature
188(1)
References
189(4)
9 Nonchemical Methods to Control Scale and Deposit Formation
193(30)
Young I. Cho
Hyoung-Sup Kim
9.1 Introduction
193(1)
9.2 Mechanism of PWT---Bulk Precipitation
193(3)
9.3 Magnetic Water Treatment
196(2)
9.4 Laboratory Tests
198(4)
9.5 Field Tests
202(4)
9.6 Water Treatment Using Solenoid Coils
206(1)
9.7 Laboratory Tests
207(2)
9.8 Field Tests
209(3)
9.9 Water Treatment Using RF Electric Fields
212(3)
9.10 Water Treatment Using High-Voltage Capacitor System
215(1)
9.11 Validation Field Tests
216(1)
9.12 Water Treatment Using Catalytic Metals
216(2)
9.13 Validation Studies
218(1)
9.14 Conclusions
219(4)
Nomenclature
219(1)
References
219(4)
10 New Product Development for Oil Field Application
223(16)
Tao Chen
Ping Chen
Harry Montgomerie
Thomas Hagen
10.1 Introduction
223(2)
10.1.1 Scale Inhibitor Chemistry
225(1)
10.2 Experiment Procedures
225(3)
10.2.1 Formation Water and Seawater Compatibility Tests
225(1)
10.2.2 Dynamic Loop Tests
226(1)
10.2.3 Dynamic Core Flood Tests
227(1)
10.2.4 Scale Inhibitor Return Analysis
228(1)
10.3 Results and Discussion
228(7)
10.3.1 Formation Water and Seawater Compatibility Tests
228(1)
10.3.2 Dynamic Loop Tests
229(2)
10.3.3 Dynamic Core Flood Tests
231(1)
10.3.4 Development of Scale Inhibitors for Field Squeeze Application---Environmental Data
232(1)
10.3.5 Field Application---Scale Inhibitor SI-D in Well-A
233(1)
10.3.6 Field Application---Scale Inhibitor SI-E in Well-B
234(1)
10.4 Summary
235(1)
10.5 Conclusions
235(4)
Nomenclature
236(1)
References
237(2)
11 Patent Review Related to Scale and Scale Inhibition
239(84)
Zahid Amjad
Konstantinos D. Demadis
11.1 Introduction
239(84)
Patent 1
239(1)
Patent 2
240(2)
Patent 3
242(1)
Patent 4
242(1)
Patent 5
242(1)
Patent 6
243(1)
Patent 7
243(1)
Patent 8
244(2)
Patent 9
246(1)
Patent 10
246(1)
Patent 11
247(1)
Patent 12
247(5)
Patent 13
252(1)
Patent 14
252(1)
Patent 15
253(1)
Patent 16
253(1)
Patent 17
254(1)
Patent 18
254(3)
Patent 19
257(1)
Patent 20
257(1)
Patent 21
258(1)
Patent 22
258(3)
Patent 23
261(1)
Patent 24
261(2)
Patent 25
263(1)
Patent 26
263(1)
Patent 27
263(1)
Patent 28
264(1)
Patent 29
264(1)
Patent 30
264(1)
Patent 31
265(1)
Patent 32
265(1)
Patent 33
266(1)
Patent 34
266(2)
Patent 35
268(1)
Patent 36
269(1)
Patent 37
269(2)
Patent 38
271(1)
Patent 39
272(1)
Patent 40
273(1)
Patent 41
273(1)
Patent 42
273(1)
Patent 43
274(4)
Patent 44
278(6)
Patent 45
284(3)
Patent 46
287(1)
Patent 47
288(1)
Patent 48
288(1)
Patent 49
289(1)
Patent 50
290(1)
Patent 51
290(1)
Patent 52
291(2)
Patent 53
293(1)
Patent 54
293(2)
Patent 55
295(2)
Patent 56
297(3)
Patent 57
300(1)
Patent 58
301(1)
Patent 59
301(1)
Patent 60
301(3)
Patent 61
304(1)
Patent 62
304(1)
Patent 63
304(1)
Patent 64
305(4)
Patent 65
309(1)
Patent 66
310(2)
Patent 67
312(1)
Patent 68
313(1)
Patent 69
314(1)
Patent 70
315(1)
Patent 71
315(1)
Patent 72
315(1)
Patent 73
315(1)
Patent 74
316(1)
Patent 75
316(2)
Patent 76
318(1)
Patent 77
318(1)
Acknowledgment
319(4)
Section II Biological, Environmental and Home Care
12 Scaling Problems in Home Care Applications
323(30)
Somil Mehta
Jan Shulman
Alain Dufour
12.1 Introduction
323(1)
12.2 Fundamentals of Scaling
323(5)
12.2.1 Introduction to Scale/Deposit
323(2)
12.2.2 Basics of Water Chemistry
325(2)
12.2.3 Type of Scales
327(1)
12.3 Methods for Avoiding Scale Formation
328(6)
12.3.1 Inorganic Builders
329(1)
12.3.2 Organic Builders
329(4)
12.3.3 Polymeric (Co-)Builders
333(1)
12.3.4 Ion Exchange
334(1)
12.3.5 Precipitation
334(1)
12.4 Examples of Scaling and Control in Home Care Applications
334(16)
12.4.1 Laundry (Automatic and Hand Laundry)
334(3)
12.4.2 Dishwashing (Automatic and Hand Dish)
337(5)
12.4.3 Hard Surface Care
342(2)
12.4.4 Industrial and Institutional Cleaners
344(6)
12.5 Recent Trends in Environmental Considerations
350(1)
12.6 Summary
351(2)
References
351(2)
13 Tartar and Plaque Control
353(20)
Kosuke Nozaki
Noriko Ebe
Kimihiro Yamashita
Akiko Nagai
13.1 Oral Cavity
353(1)
13.1.1 Tooth
353(1)
13.1.2 Periodontium
353(1)
13.2 Dental Plaque
353(4)
13.2.1 Composition
354(1)
13.2.2 Structure
355(1)
13.2.3 Dental Plaque Formation
355(1)
13.2.4 Resistance to Antimicrobial Agents
356(1)
13.3 Dental Calculus
357(6)
13.3.1 Distribution
357(1)
13.3.2 Composition
358(3)
13.3.3 Structure
361(1)
13.3.4 Mineralization Mechanism
361(2)
13.4 Plaque Control
363(6)
13.4.1 Significance of Plaque and Calculus for the Disease Process
363(1)
13.4.2 Supragingival Plaque Control
363(2)
13.4.3 Calculus Prevention
365(1)
13.4.4 Calculus Removal Methods and Their Efficacy
366(3)
13.5 Summary
369(4)
References
369(4)
14 Calcium Pyrophosphate Dihydrate Deposition Disease
373(20)
Orestis L. Katsamenis
Nikolaos Bouropoulos
14.1 Physiological and Pathological Mineralization in the Human Body
373(2)
14.2 The Nature and Composition of CPPD
375(1)
14.2.1 Calcium Phosphates and Pyrophosphates
375(1)
14.2.2 Crystal Structure of CPPD
375(1)
14.3 Mechanism of CPPD Calcification
375(3)
14.3.1 Generation and Supersaturation of Inorganic Pyrophosphate in the Human Body
375(3)
14.3.2 Nucleation and Growth of CPPD Crystals
378(1)
14.4 Pathological Deposition of CPPD in the Human Body
378(6)
14.4.1 Historical Note
378(1)
14.4.2 Nomenclature
379(1)
14.4.3 Clinical Manifestation, Morphology, and Anatomical Locations of CPPD Crystal Deposits
379(1)
14.4.4 Coexistence with Other Pathologies
380(1)
14.4.5 Implications on the Mechanical Properties of the Tissue
381(3)
14.4.6 Treatment and Management of CPP Crystal Deposition Disease
384(1)
14.5 In vitro Synthesis and Characterization of CPPD Crystals
384(9)
14.5.1 Synthesis of t-and m-CPPD Crystals
384(1)
14.5.2 In vitro Dissolution and Growth Properties of CPPD Crystals
385(1)
14.5.3 Characterization of t- and m-CPPD in Pathological Deposits
385(2)
14.5.4 In vitro Model Systems for the Study of Pathological Cartilage Calcification
387(1)
14.5.5 Inhibitors
387(1)
Acknowledgments
388(1)
References
388(5)
15 Importance of Calcium-Based Scales in Kidney Stone
393(24)
Mualla Oner
Aslam Khan
Saeed R. Khan
15.1 Introduction
393(1)
15.2 Crystallization Kinetics
393(7)
15.2.1 Supersaturation
393(3)
15.2.2 Nucleation
396(1)
15.2.3 Crystal Growth
397(1)
15.2.4 Crystal Aggregation
398(1)
15.2.5 Calcium Oxalate Crystals
398(2)
15.3 Effect of Additives on Calcium Oxalate Crystallization, Results of In vitro Studies
400(2)
15.4 Calcium Oxalate in Kidney Stones
402(1)
15.4.1 Prevalence and Economic Impact
402(1)
15.5 Composition and Structure of Stones
402(2)
15.5.1 Stone Matrix
404(1)
15.6 Crystallization Modulators
404(6)
15.6.1 Glycosaminoglycans
404(1)
15.6.2 Osteopontin
405(1)
15.6.3 Matrix Gla Protein
406(1)
15.6.4 Urinary Prothrombin Fragment-1
406(1)
15.6.5 Tamm---Horsfall Protein
406(1)
15.6.6 Inter-α-Inhibitor
407(2)
15.6.7 Lipids and Cellular Membranes
409(1)
15.7 Concluding Remarks
410(7)
Acknowledgment
410(1)
References
410(7)
16 Calcification of Biomaterials
417(26)
Stamatia Rokidi
Dimosthenis Mavrilas
Petros G. Koutsoukos
16.1 Introduction: Implants---Problems of Their Functionality
417(1)
16.2 Phase Changes in Solutions. The Formation of Crystals of Minerals from Aqueous Solutions. Homogeneous and Heterogeneous Nucleation
418(2)
16.3 Thermodynamics and Kinetics of the Formation of Mineral Phases. Experimental Methods for the Investigation of Implants Mineralization
420(3)
16.4 The Case of Calcium Phosphates
423(2)
16.5 Mineralization of Calcium Phosphates of Heart Valve Tissues
425(5)
16.6 Calcification of Biocements
430(8)
16.7 Encrustation of Catheters by Calcium Oxalates
438(1)
16.8 Conclusions
439(4)
References
440(3)
17 Removal of Toxic Materials from Aqueous Streams
443(34)
Anastasios I. Zouboulis
Efrosyni N. Peleka
Petros Samaras
17.1 Introduction
443(1)
17.2 Toxic Materials
444(2)
17.2.1 Definitions
444(1)
17.2.2 Inorganic Substances
444(1)
17.2.3 Organic Substances
445(1)
17.2.4 Toxic Materials in Water
445(1)
17.2.5 Toxic Materials in Wastewater
446(1)
17.3 Removal Methods
446(13)
17.3.1 Chemical Precipitation
447(1)
17.3.2 Electrochemical Treatment
447(2)
17.3.3 Coagulation---Flocculation
449(1)
17.3.4 Flotation
450(2)
17.3.5 Membrane Filtration
452(1)
17.3.6 Adsorption and Ion Exchange
453(2)
17.3.7 Catalytic Degradation
455(3)
17.3.8 Biological Degradation
458(1)
17.4 Disposal Issues
459(4)
17.4.1 Waste Minimization
459(2)
17.4.2 Recycling
461(1)
17.4.3 Degradation
462(1)
17.4.4 Stabilization/Solidification and Vitrification
463(1)
17.5 Selected Case Studies---Applications
463(14)
1.7.5.1 Management of Arsenic Minerals at the Yerranderie Mine Site
463(1)
17.5.2 New Media Reduces Copper and Zinc at Hydrocarbon Processing Facility
464(1)
17.5.3 Microfiltration System Reduces Waste by Two-Thirds
464(1)
References
464(13)
Section III Scaling and Fouling Issues by Industry
18 Membrane-Based Desalination Processes: Challenges and Solutions
477(22)
Mark Wilf
18.1 Introduction
477(1)
18.2 The RO Process
477(1)
18.3 Permeate Recovery Rate (Conversion Ratio)
478(1)
18.4 Net Driving Pressure
479(1)
18.5 Salt-Water Separation in RO Process
479(1)
18.6 Water Transport
480(1)
18.7 Salt Transport
480(1)
18.8 Salt Passage and Salt Rejection
481(1)
18.9 Temperature Effect on Transport Rate
481(1)
18.10 Average Permeate Flux
481(1)
18.11 Specific Water Permeability of a Membrane
482(1)
18.12 Commercial RO/Nanofiltration Membrane Technology
482(1)
18.13 CA Membranes
483(1)
18.14 Composite Polyamide Membranes
484(1)
18.15 Membrane Module Configurations
484(1)
18.16 Spiral Wound Elements
484(2)
18.17 Spiral Wound Element Categories
486(2)
18.18 RO System Configuration
488(1)
18.19 Membrane Assembly Unit
489(1)
18.20 Concentrate Staging
489(1)
18.21 Permeate Staging (Two-Pass Systems)
490(2)
18.22 Membrane Elements Fouling
492(1)
18.22.1 Membrane Elements Fouling Process
492(1)
18.23 Membrane Performance Restoration
493(2)
18.23.1 Chemical Cleaning
493(2)
18.23.2 Direct Osmosis Cleaning
495(1)
18.24 Challenges and Potential for Improvement of the RO Process
495(4)
18.24.1 Brackish Water Desalination
495(1)
18.24.2 Seawater Desalination
495(1)
18.24.3 Municipal Wastewater Reclamation
495(1)
18.24.4 Membranes and Membrane Modules
496(1)
18.24.5 Feed Water Quality and Membrane Pretreatment
496(1)
References
496(3)
19 Cooling Water Systems: An Overview
499(34)
Salvador Avila Filho
Jose Rafael Nascimento Lopes
19.1 Context and Paradigms
499(2)
19.1.1 Climate Change and Water Economy
499(1)
19.1.2 Energy Integration in Production
500(1)
19.2 Cooling Systems and Cooling Tower
501(5)
19.2.1 Types of Cooling Systems of Thermal Fluids
501(1)
19.2.2 Operation and Process of Cooling Systems
502(4)
19.3 New Technologies and Projects
506(7)
19.3.1 New Industrial Project and Energy
506(2)
19.3.2 Automation and Process Control Projects
508(1)
19.3.3 Research on Energy Management in the Cooling Tower
509(1)
19.3.4 Management of Water Availability
509(3)
19.3.5 Reuse and Quality of the Wastewater
512(1)
19.4 Audit in Cooling Towers
513(12)
19.4.1 Audit and Inspection in Industrial Plants
514(5)
19.4.2 Data and Procedures
519(3)
19.4.3 Mass and Energy Balance Calculations
522(1)
19.4.4 Maintenance of Cooling Towers
523(1)
19.4.5 Operational Routines and External Influences
524(1)
19.5 Cooling System: Capability, Control and Performance
525(3)
19.5.1 Effects of Losing Operation Control in Cooling Systems
525(2)
19.5.2 Analyze the Current Project in Operation
527(1)
19.5.3 Management, Maintenance and Operation
527(1)
19.6 Guidelines for Control of Cooling Towers
528(5)
19.6.1 Design Criteria
529(1)
19.6.2 Interaction with Environment
529(1)
19.6.3 Process Control, Water Balance (Cycles), and Thermal Distribution
529(1)
19.6.4 Water Treatment and Corrosion
530(1)
19.6.5 Maintenance and Operation of Cooling Systems (Structure/Materials)
530(1)
19.6.6 Transfer of Heat and Mass (Water and Air)
530(1)
19.6.7 Solution for Testing and Cooling System
530(1)
19.6.8 Water Supply and Availability in Sources
530(1)
19.6.9 Water Demand and Quality Sources and Necessities
530(1)
Acknowledgments
531(1)
References
531(2)
20 Fouling in Dairy Processes
533(24)
Trinh Khanh Tuoc
20.1 Introduction
533(1)
20.1.1 Definition of Fouling
533(1)
20.1.2 Importance of Fouling for the Industry
533(1)
20.1.3
Chapter Organization
533(1)
20.2 Mechanism of Fouling by Milk and Milk Components
534(2)
20.2.1 Overarching Mechanism
534(1)
20.2.2 Activation of Different Components of Milk
534(2)
20.3 Composition, Types, and Structures of Fouling
536(2)
20.3.1 Types and Composition
536(1)
20.3.2 Occurrences in Different Manufacturing Processes
537(1)
20.3.3 Types and Structures
537(1)
20.4 The Measurement of Fouling
538(2)
20.4.1 Mass Measurement
538(1)
20.4.2 In-line Measurements
538(1)
20.4.3 Stages of Thermal Fouling
539(1)
20.5 Factors Affecting Fouling by Milk
540(7)
20.5.1 Milk Composition
541(1)
20.5.2 Seasonal Variation and Environment Factors
541(1)
20.5.3 Milk Quality
541(2)
20.5.4 Temperature
543(1)
20.5.5 Geometry and Flow Rate
543(1)
20.5.6 Surface Condition
544(1)
20.5.7 Dissolved Gases
545(1)
20.5.8 Pressure
546(1)
20.6 Equipment Fouling in Milk Powder Plants
547(3)
20.6.1 The Milk Powder Process
547(1)
20.6.2 Location of Deposits by Type and Mechanism
548(2)
20.7 How to Limit Fouling
550(2)
20.7.1 Start-up Procedure
550(2)
20.8 Cleaning-in-Place
552(2)
20.8.1 CIP Protocol
552(1)
20.8.2 Factors Affecting CIP
552(2)
20.8.3 Microbial Deactivation and Sanitation
554(1)
20.9 Conclusions
554(3)
References
555(2)
21 Scaling in Alkaline Spent Pulping Liquor Evaporators
557(16)
Maria Cristina Area
Fernando Esteban Felissia
21.1 The Kraft Chemical Recovery Process
557(2)
21.2 Types of Scale Deposits in Alkaline Spent Pulping Liquor Evaporators
559(2)
21.3 Why Does Scale Form?
561(3)
21.4 Mitigation Methods, Including Scale Inhibition
564(2)
21.5 Modeling Fouling Processes and Case Studies
566(2)
21.6 Conclusions
568(5)
References
568(5)
22 Control of Silica-Based Scales in Cooling and Geothermal Systems
573(10)
Darrell L. Gallup
Paul von Hirtz
22.1 Introduction
573(1)
22.2 Thermodynamic and Kinetic Impacts on Geothermal Scale Deposition
574(1)
22.3 Geothermal Scale Types and Formation Mechanisms
574(4)
22.3.1 Amorphous Silica
575(2)
22.3.2 Metal Silicates and Clays
577(1)
22.3.3 Carbonates
577(1)
22.3.4 Sulfides
577(1)
22.3.5 Sulfates
578(1)
22.3.6 Fluorite and Halite
578(1)
22.3.7 Corrosion Products
578(1)
22.4 Control of Silica-Based Scales
578(2)
22.4.1 Hot Brine Injection
579(1)
22.4.2 Acidified Brine Injection
579(1)
22.4.3 Aging Brines
579(1)
22.4.4 Crystallizer Reactor-Clarification
579(1)
22.4.5 Metal Salt Treatment
579(1)
22.4.6 Cationic Surfactant Treatment
579(1)
22.4.7 Brine Dilution
580(1)
22.4.8 Reducing Agents
580(1)
22.4.9 Organic Inhibitors and Dispersants
580(1)
22.4.10 Chelating Agents
580(1)
22.4.11 Caustic Soda Treatment
580(1)
22.5 Review of Silica Inhibitors Tested
580(3)
References
581(2)
23 Thermal Desalination: Current Challenges
583(20)
Christopher M. Fellows
Ali Al-Hamzah
23.1 Introduction
583(1)
23.2 Thermal Desalination Processes
584(1)
23.3 Seawater Chemistry
585(1)
23.4 Scale Characterization
586(1)
23.5 Thermodynamics and Kinetics of Scale Formation
586(4)
23.5.1 Soft Scale---Calcium Carbonate and Magnesium Hydroxide
586(3)
23.5.2 Hard Scale---Calcium Sulfate and Magnesium Hydroxide
589(1)
23.5.3 Physical Factors in Kinetics
590(1)
23.6 Control of Scale Formation
590(8)
23.6.1 Acid Treatment
591(1)
23.6.2 Electrolytic Treatment
591(1)
23.6.3 Magnetic Treatment
591(1)
23.6.4 Pre-Precipitation
591(1)
23.6.5 Nanofiltration
592(1)
23.6.6 Scale Inhibitors
592(2)
23.6.7 Phosphates and Polyphosphates
594(1)
23.6.8 Phosphonates and Polyphosphonates
594(2)
23.6.9 Polymaleic Acid and Derivatives
596(1)
23.6.10 Polyacrylic Acid
596(1)
23.6.11 Other Polycarboxylic Acids
597(1)
23.6.12 Polysulfonates
597(1)
23.7 Inhibitor Mixtures
598(1)
23.8 Future Directions
598(5)
References
599(4)
24 Oil Field Mineral Scale Control
603(16)
Ping Zhang
Amy T. Kan
Mason B. Tomson
24.1 Introduction
603(1)
24.2 Common Oil Field Scales
603(3)
24.2.1 Carbonate Scales
604(1)
24.2.2 Sulfate Scales
604(2)
24.3 Scale Control Strategies
606(1)
24.4 Scale Inhibition by Use of Scale Inhibitors
607(2)
24.4.1 Common Oil Field Inhibitors
607(1)
24.4.2 Scale Inhibition---How Does It Work?
608(1)
24.5 Scale Inhibition Treatment
609(5)
24.5.1 Continuous Injection
610(1)
24.5.2 Squeeze Treatment
610(1)
24.5.3 Retention Mechanism of the Squeezed Inhibitors: Adsorption or Precipitation
611(1)
24.5.4 Adsorption Mechanism
611(1)
24.5.5 Precipitation Mechanism and Precipitation Squeeze
612(1)
24.5.6 Recently Developed Squeeze Treatment Techniques
612(1)
24.5.7 Nonaqueous Scale Inhibitors Development
613(1)
24.6 Scale Removal Methods
614(5)
Glossary
615(1)
References
615(4)
25 Scale in Sugar Juice Evaporators: Types, Cases, and Prevention
619(20)
Christopher P. East
Christopher M. Fellows
William O.S. Doherty
25.1 Introduction
619(2)
25.2 Types and Sources of Scale
621(3)
25.3 Case Studies of Evaporator Scale
624(8)
25.3.1 Scale Formation in Australian Sugar Mill Evaporators
624(1)
25.3.2 Scale Formation in South African Sugar Mill Evaporators
625(1)
25.3.3 Scale Formation in Fiji Cane Mill
626(1)
25.3.4 Scales Formed in Beet Sugar Evaporators
627(1)
25.3.5 New Developments in Scale Analysis
628(4)
25.4 Scale Management
632(4)
25.4.1 Scale Inhibitors
633(1)
25.4.2 Evaporator Cleaning
634(2)
25.5 Conclusion
636(3)
References
636(3)
26 Boiler Water Treatment
639(18)
Bhabani Shankar Panigrahi
Krishnamurthy Ganapathysubramanian
26.1 Introduction
639(1)
26.2 Silicate Deposits
640(2)
26.3 Corrosion in Boilers
642(1)
26.4 Effects of Scale/Deposits in Steam Generating Systems
643(1)
26.5 Production of High Pure Water
643(1)
26.6 Pretreatment of Raw/Source Water
643(1)
26.6.1 Chlorination
643(1)
26.6.2 Clarification and Softening
644(1)
26.7 Water Purification Processes
644(3)
26.7.1 Reverse Osmosis
644(2)
26.7.2 Ion Exchange
646(1)
26.8 Types of Boilers
647(2)
26.8.1 Condenser
647(1)
26.8.2 Condensate Polishing Unit
647(2)
26.9 pH
649(1)
26.9.1 Sources of Alkalinity
649(1)
26.10 Dissolved Oxygen
650(2)
26.10.1 Effect of Excess Hydrazine in Feed Water
651(1)
26.10.2 Oxygenated Treatment
651(1)
26.11 Conductivity
652(1)
26.12 Silica
653(1)
26.13 Copper
653(1)
26.14 Iron
653(1)
26.15 Chloride
654(1)
26.16 Sodium
654(1)
26.17 Conclusion
654(3)
References
654(3)
27 Scale Formation in Tungsten Hydrometallurgical Process
657(1)
Raj P. Singh Gaur
27.1 A. Introduction
657(24)
27.2 Purpose
658(1)
27.3 Experimental Section
658(1)
27.3.1 Scale Samples
658(1)
27.3 Analytical Methods
659(1)
27.4 Section 1: Tantalum---Niobium Scale: Na14(Ta0.715Nb0.285)12O37.31H2O and Na3Ta0.715Nb0.285O4 Form in the Filter Press
659(8)
27.4.1 Background
659(1)
27.4.2 Chemical Characterization of Tantalum---Niobium Scale
660(1)
27.4.3 Chemistry of Scale Formation
661(1)
27.4.4 SEM Analysis
662(1)
27.4.5 Infrared Spectroscopy
663(1)
27.4.6 Dehydration and Analysis of Heated Scale Sample
664(1)
27.4.7 Mechanism of Scale Formation
665(1)
27.4.8 Summary of Section 1
666(1)
27.5 Section 2: Magnesium Hydroxide-Type Tungsten-Containing Scale
667(14)
27.5.1 Previous Literature
667(1)
27.5.2 Background
667(1)
27.5.3 Genesis of the Scale
668(2)
27.5.4 Chemical Composition and Phase Identification of Scale
670(2)
27.5.5 Morphology of the Scale
672(2)
27.5.6 Driving Force for the Formation of Scale
674(1)
27.5.7 Mechanism of Scale Formation
675(1)
27.5.8 Summary of Section 2
676(1)
Acknowledgment
676(1)
References
676(5)
Section IV Systems Support and Maintenance
28 Analytical Techniques to Characterize Scales and Deposits
681(20)
Christopher P. East
Tara L. Schiller
Christopher M. Fellows
William O.S. Doherty
28.1 Introduction
681(1)
28.2 Analytical Techniques and Analysis
681(8)
28.2.1 Visual Inspection and Light Microscopy
682(1)
28.2.2 Wet Chemical Analysis
682(2)
28.2.3 Scanning Electron Microscopy
684(1)
28.2.4 X-ray Diffraction
685(1)
28.2.5 X-ray Fluorescence (XRF)
685(1)
28.2.6 X-ray Photoelectron Spectroscopy (XPS)
686(1)
28.2.7 Fourier Transform Infrared Spectroscopy (FTIR)
687(1)
28.2.8 Raman Spectroscopy
688(1)
28.2.9 Thermal Gravimetric Analysis (TGA)
688(1)
28.2.10 Inductively Coupled Plasma Optical Emission Spectroscopy and Mass Spectrometry (ICP---OES and ---MS)
688(1)
28.2.11 Atomic Absorption and Emission Spectroscopy (AAS/AES)
689(1)
28.2.12 Other Analytical Techniques
689(1)
28.3 Case Study 1---Power Plant Scrubber Scale
689(4)
28.4 Case Study 2---Membrane Technology
693(3)
28.4.1 Membrane Autopsy---European Power Station
694(2)
28.5 Case Study 3---Blocked Cooling System in Polyethylene Plant
696(1)
28.6 Case Study 4---Heat Exchangers in the Oil and Gas Industry
696(1)
28.7 Case Study 5---Sugar Cane Juice Evaporator
697(4)
Acknowledgments
698(1)
References
698(3)
29 Removal/Dissolution of Mineral Scale Deposits
701(20)
Kalpana Chauhan
Poonam Sharma
Ghanshyam S. Chauhan
29.1 Introduction
701(5)
29.1.1 Scale
702(1)
29.1.2 Scale Formation
703(1)
29.1.3 Chemical Background of Scale Formation
703(2)
29.1.4 Nucleation and Particle Growth
705(1)
29.1.5 Mechanism of Scale Formation
706(1)
29.2 Scale Removal and Inhibition/Dissolution
706(6)
29.2.1 Removal Techniques
707(3)
29.2.2 Preventing Measures
710(2)
29.3 Mechanisms of Dissolution and Inhibition
712(2)
29.3.1 Threshold Inhibition
712(1)
29.3.2 Chelates
712(1)
29.3.3 Crystal Distortion
713(1)
29.3.4 Crystal Dispersion
713(1)
29.4 Scale Inhibitor Chemistry
714(2)
29.4.1 Competent Polymeric Structures in Scale Dissolution/Inhibition
715(1)
29.5 "Green" Solutions
716(1)
29.6 New Green Alternatives
717(1)
29.7 Future Prospective
717(4)
References
718(3)
30 Scaling Indices: Types and Applications
721(16)
Robert J. Ferguson
30.1 Introduction
721(11)
30.1.1 Ion Association (Minimizing Assumption 1)
723(2)
30.1.2 Rigorous Carbonic Acid Calculations (Minimizing Assumption 2)
725(2)
30.1.3 Activity Coefficients Calculation (Minimizing Assumption 3)
727(1)
30.1.4 pH Variation with Temperature (Minimizing Assumption 4)
728(1)
30.1.5 Criticism of Indices
729(2)
30.1.6 Specialized and Derivative Indices
731(1)
30.1.7 Application Guidelines
731(1)
30.2 Applications
732(1)
30.2.1 Oil Field Brines
732(1)
30.2.2 Scale Inhibition by Induction Time Extension
732(1)
30.3 Summary and Recommendations
733(4)
Appendix 1 Derivation of a Simple Index
733(1)
References
734(3)
31 On-Line Monitoring of Water Treatment Chemicals
737(10)
Barbara E. Moriarty
31.1 Water Quality
737(1)
31.2 Complete Water Analysis for Scale Control
738(1)
31.3 Analysis of Individual Scale Components
739(3)
31.4 Analysis/Monitoring of Scale Control Product
742(1)
31.5 Product Monitoring---Individual Component
742(1)
31.6 Biocide Monitoring and Control
743(1)
31.7 Corrosion Control Products
744(1)
31.8 On-line and At-line Analyzes
744(3)
References
745(2)
Index 747
Zahid Amjad received his BSc in Chemistry (Honors) and MSc in Chemistry from the University of the Panjab, Pakistan, and PhD from Glasgow University, Scotland, United Kingdom. He was a lecturer at the Institute of Chemistry of Panjab University and served as an assistant research professor at the State University of New York at Buffalo, New York. He started his professional career as an R & D scientist. During his more than 30 years at Calgon Corporation, Pittsburgh, Pennsylvania, and Lubrizol Advanced Materials, Inc., Cleveland, Ohio, he has worked in various fields, including water treatment, water purification, cosmetics, home care, oral care, and pharmaceutics, and related fields. Dr. Amjad has presented numerous invited lectures and participated in symposiums around the world. He has published more than 200 papers, has contributed to numerous book chapters, has edited seven books, and holds 30 US patents. His awards include Induction into the National Hall of Corporate Inventors, EDI Innovation Award, and the recipient of the Association of the Water Technologies Ray Baum Memorial Water Technologist of the Year Award. Dr. Amjad is a member of several societies and has organized several symposiums on crystal growth formation and inhibition, physico-chemical processes at solid-liquid interface, adsorption, desorption, and dispersion. He is the owner of Aqua Science and Technology LLC, Columbus, Ohio, which provides consulting services for industrial water treatment, separation processes, and related technologies. Dr. Amjad currently serves as a visiting professor in the School of Arts and Sciences, Walsh University, North Canton, Ohio. Kostas Demadis is currently a Professor of Chemistry at the Department of Chemistry, University of Crete, Greece. He is head of the Crystal Engineering, Growth & Design Laboratory delving into diverse fields of chemistry and chemical technology. His research group is involved in projects that embrace phosphonate and metal phosphonate chemistry (synthesis, characterization and applications of metal phosphonate materials), functional hybrid materials, silicon chemistry (modeling of biosilicification mechanisms), water treatment issues (mineral scale inhibition, corrosion control, metal ion absorption), controlled release of active pharmaceutical ingredients (in particular phosphonate-based drugs), and green chemistry and engineering. Professor Demadis has published over 220 papers in peer reviewed journals, 24 chapters in books, 8 books, and is the inventor of 2 patents.