Atjaunināt sīkdatņu piekrišanu

E-grāmata: Mining Data for Financial Applications: 4th ECML PKDD Workshop, MIDAS 2019, Wurzburg, Germany, September 16, 2019, Revised Selected Papers

Edited by , Edited by , Edited by , Edited by , Edited by , Edited by
  • Formāts: EPUB+DRM
  • Sērija : Lecture Notes in Computer Science 11985
  • Izdošanas datums: 03-Jan-2020
  • Izdevniecība: Springer Nature Switzerland AG
  • Valoda: eng
  • ISBN-13: 9783030377205
  • Formāts - EPUB+DRM
  • Cena: 53,52 €*
  • * ši ir gala cena, t.i., netiek piemērotas nekādas papildus atlaides
  • Ielikt grozā
  • Pievienot vēlmju sarakstam
  • Šī e-grāmata paredzēta tikai personīgai lietošanai. E-grāmatas nav iespējams atgriezt un nauda par iegādātajām e-grāmatām netiek atmaksāta.
  • Formāts: EPUB+DRM
  • Sērija : Lecture Notes in Computer Science 11985
  • Izdošanas datums: 03-Jan-2020
  • Izdevniecība: Springer Nature Switzerland AG
  • Valoda: eng
  • ISBN-13: 9783030377205

DRM restrictions

  • Kopēšana (kopēt/ievietot):

    nav atļauts

  • Drukāšana:

    nav atļauts

  • Lietošana:

    Digitālo tiesību pārvaldība (Digital Rights Management (DRM))
    Izdevējs ir piegādājis šo grāmatu šifrētā veidā, kas nozīmē, ka jums ir jāinstalē bezmaksas programmatūra, lai to atbloķētu un lasītu. Lai lasītu šo e-grāmatu, jums ir jāizveido Adobe ID. Vairāk informācijas šeit. E-grāmatu var lasīt un lejupielādēt līdz 6 ierīcēm (vienam lietotājam ar vienu un to pašu Adobe ID).

    Nepieciešamā programmatūra
    Lai lasītu šo e-grāmatu mobilajā ierīcē (tālrunī vai planšetdatorā), jums būs jāinstalē šī bezmaksas lietotne: PocketBook Reader (iOS / Android)

    Lai lejupielādētu un lasītu šo e-grāmatu datorā vai Mac datorā, jums ir nepieciešamid Adobe Digital Editions (šī ir bezmaksas lietotne, kas īpaši izstrādāta e-grāmatām. Tā nav tas pats, kas Adobe Reader, kas, iespējams, jau ir jūsu datorā.)

    Jūs nevarat lasīt šo e-grāmatu, izmantojot Amazon Kindle.

This book constitutes revised selected papers from the 4th Workshop on Mining Data for Financial Applications, MIDAS 2019, held in conjunction with ECML PKDD 2019, in Würzburg, Germany, in September 2019.





The 8 full and 3 short papers presented in this volume were carefully reviewed and selected from 16 submissions. They deal with challenges, potentialities, and applications of leveraging data-mining tasks regarding problems in the financial domain.

MQLV: Optimal Policy of Money Management in Retail Banking with Q-Learning.- Curriculum Learning in Deep Neural Networks for Financial Forecasting.- Representation Learning in Graphs for Credit Card Fraud Detection.- Firms Default Prediction with Machine Learning.- Convolutional Neural Networks, Image Recognition and Financial Time Series Forecasting.- Mining Business Relationships from Stocks and News.- Mining Financial Risk Events from News and Assessing their impact on Stocks.- Monitoring the Business Cycle with Fine-grained, Aspect-based Sentiment Extraction from News.- Multi-step Prediction of Financial Asset Return Volatility Using Parsimonious Autoregressive Sequential Model.- Big Data Financial Sentiment Analysis in the European Bond Markets.- A Brand Scoring System for Cryptocurrencies Based on Social Media Data.