Atjaunināt sīkdatņu piekrišanu

E-grāmata: Minnesota Notes on Jordan Algebras and Their Applications

  • Formāts: PDF+DRM
  • Sērija : Lecture Notes in Mathematics 1710
  • Izdošanas datums: 14-Nov-2006
  • Izdevniecība: Springer-Verlag Berlin and Heidelberg GmbH & Co. K
  • Valoda: eng
  • ISBN-13: 9783540484028
  • Formāts - PDF+DRM
  • Cena: 38,06 €*
  • * ši ir gala cena, t.i., netiek piemērotas nekādas papildus atlaides
  • Ielikt grozā
  • Pievienot vēlmju sarakstam
  • Šī e-grāmata paredzēta tikai personīgai lietošanai. E-grāmatas nav iespējams atgriezt un nauda par iegādātajām e-grāmatām netiek atmaksāta.
  • Formāts: PDF+DRM
  • Sērija : Lecture Notes in Mathematics 1710
  • Izdošanas datums: 14-Nov-2006
  • Izdevniecība: Springer-Verlag Berlin and Heidelberg GmbH & Co. K
  • Valoda: eng
  • ISBN-13: 9783540484028

DRM restrictions

  • Kopēšana (kopēt/ievietot):

    nav atļauts

  • Drukāšana:

    nav atļauts

  • Lietošana:

    Digitālo tiesību pārvaldība (Digital Rights Management (DRM))
    Izdevējs ir piegādājis šo grāmatu šifrētā veidā, kas nozīmē, ka jums ir jāinstalē bezmaksas programmatūra, lai to atbloķētu un lasītu. Lai lasītu šo e-grāmatu, jums ir jāizveido Adobe ID. Vairāk informācijas šeit. E-grāmatu var lasīt un lejupielādēt līdz 6 ierīcēm (vienam lietotājam ar vienu un to pašu Adobe ID).

    Nepieciešamā programmatūra
    Lai lasītu šo e-grāmatu mobilajā ierīcē (tālrunī vai planšetdatorā), jums būs jāinstalē šī bezmaksas lietotne: PocketBook Reader (iOS / Android)

    Lai lejupielādētu un lasītu šo e-grāmatu datorā vai Mac datorā, jums ir nepieciešamid Adobe Digital Editions (šī ir bezmaksas lietotne, kas īpaši izstrādāta e-grāmatām. Tā nav tas pats, kas Adobe Reader, kas, iespējams, jau ir jūsu datorā.)

    Jūs nevarat lasīt šo e-grāmatu, izmantojot Amazon Kindle.

This volume contains a re-edition of Max Koecher's famous Minnesota Notes. The main objects are homogeneous, but not necessarily convex, cones. They are described in terms of Jordan algebras. The central point is a correspondence between semisimple real Jordan algebras and so-called omega-domains. This leads to a construction of half-spaces which give an essential part of all bounded symmetric domains. The theory is presented in a concise manner, with only elementary prerequisites. The editors have added notes on each chapter containing an account of the relevant developments of the theory since these notes were first written.

Papildus informācija

Springer Book Archives
Domains of Positivity
1(34)
Some notions and notations
1(4)
The notion of a domain of positivity
5(4)
The automorphisms of a domain of positivity
9(3)
Norms of a domain of positivity
12(2)
Examples
14(3)
Differential operators
17(4)
An invariant line element
21(2)
The map y→y#
23(6)
Homogeneous domains of positivity
29(6)
Notes
32(1)
Editors' Notes
32(3)
Omega Domains
35(18)
The notion of an ω-domain
35(3)
Some examples
38(2)
The geodesics of an ω-domain
40(5)
Non-associative algebras
45(3)
ω-domains and Jordan algebras
48(5)
Notes
50(1)
Editors' Notes
51(2)
Jordan Algebras
53(20)
Jordan algebras
53(5)
The radical of a Jordan algebra
58(3)
The unit element of a Jordan algebra
61(3)
The decomposition theorem
64(2)
The inverse
66(2)
Constructions of Jordan algebras
68(5)
Notes
71(1)
Editors' Notes
71(2)
Real and Complex Jordan Algebras
73(20)
The quadratic representation
73(3)
Mutations
76(2)
A generalization of the fundamental formula
78(4)
The exponential
82(3)
The associated Lie algebra
85(4)
Direct sums
89(4)
Notes
90(1)
Editors' Notes
91(2)
Complex Jordan Algebras
93(16)
Minimal polynomial and eigenvalues
93(2)
Minimal relations
95(2)
The minimal decomposition
97(2)
Applications of the minimal decomposition
99(3)
The eigenvalues of L(u) and P(u)
102(3)
The embedding of real Jordan algebras
105(4)
Notes
107(1)
Editors' Notes
108(1)
Jordan Algebras and Omega Domains
109(18)
The ω-domain of a Jordan algebra
109(4)
The Jordan algebra of an ω-domain
113(2)
Jordan algebras with equivalent ω-domains
115(2)
Formally real Jordan algebras
117(2)
Homogeneous domains of positivity
119(3)
Elementary functions on formally real Jordan algebras
122(2)
Direct sums
124(3)
Notes
125(1)
Editors' notes
126(1)
Half-Spaces
127(30)
The half-space of a semisimple Jordan algebra
127(4)
The isotropy group H0
131(4)
Application to the set H
135(5)
Biholomorphic automorphisms of half-spaces
140(2)
Formally real Jordan algebras
142(3)
The bounded symmetric domain Z
145(2)
Remarks on classification
147(1)
One typical example
148(9)
Notes
153(1)
Editors' Notes
153(4)
Appendix: The Bergman kernel function 157(6)
1. Reproducing kernels
157(2)
2. Domains in complex number space
159(4)
Notes
161(1)
Editors' Notes
161(2)
Bibliography 163(8)
Index 171(4)
Biography 175