|
|
xiii | |
|
|
xvii | |
Preface |
|
xxiii | |
|
|
1 | (10) |
|
|
1 | (2) |
|
1.2 Finite Mixture Models |
|
|
3 | (1) |
|
1.3 Model-Based Clustering, Classification, and Discriminant Analysis |
|
|
4 | (2) |
|
|
6 | (2) |
|
|
8 | (1) |
|
|
9 | (1) |
|
1.7 Outline of the Contents of This Monograph |
|
|
9 | (2) |
|
2 Mixtures of Multivariate Gaussian Distributions |
|
|
11 | (28) |
|
2.1 Historical Development |
|
|
11 | (3) |
|
|
14 | (6) |
|
2.2.1 Model-Based Clustering |
|
|
14 | (1) |
|
2.2.2 Model-Based Classification |
|
|
15 | (2) |
|
2.2.3 Model-Based Discriminant Analysis |
|
|
17 | (1) |
|
2.2.4 Initialization via Deterministic Annealing |
|
|
18 | (1) |
|
|
18 | (2) |
|
2.3 Gaussian Parsimonious Clustering Models |
|
|
20 | (4) |
|
|
24 | (1) |
|
2.5 Merging Gaussian Components |
|
|
25 | (2) |
|
|
27 | (9) |
|
|
27 | (2) |
|
|
29 | (2) |
|
|
31 | (2) |
|
2.6.4 Italian Olive Oil Data |
|
|
33 | (3) |
|
|
36 | (3) |
|
3 Mixtures of Factor Analyzers and Extensions |
|
|
39 | (24) |
|
|
39 | (4) |
|
|
39 | (1) |
|
3.1.2 An EM Algorithm for the Factor Analysis Model |
|
|
40 | (2) |
|
|
42 | (1) |
|
|
43 | (1) |
|
3.2 Mixture of Factor Analyzers |
|
|
43 | (1) |
|
3.3 Parsimonious Gaussian Mixture Models |
|
|
44 | (5) |
|
3.3.1 A Family of Eight Models |
|
|
44 | (1) |
|
3.3.2 Parameter Estimation |
|
|
44 | (4) |
|
|
48 | (1) |
|
3.4 Expanded Parsimonious Gaussian Mixture Models |
|
|
49 | (3) |
|
3.4.1 A Family of Twelve Models |
|
|
49 | (1) |
|
3.4.2 Parameter Estimation |
|
|
50 | (2) |
|
3.5 Mixture of Common Factor Analyzers |
|
|
52 | (3) |
|
|
52 | (1) |
|
3.5.2 Parameter Estimation |
|
|
52 | (3) |
|
|
55 | (1) |
|
|
55 | (6) |
|
|
55 | (1) |
|
|
56 | (2) |
|
3.6.3 Italian Olive Oil Data |
|
|
58 | (1) |
|
3.6.4 Alon Colon Cancer Data |
|
|
59 | (2) |
|
|
61 | (2) |
|
4 Dimension Reduction and High-Dimensional Data |
|
|
63 | (16) |
|
4.1 Implicit and Explicit Approaches |
|
|
63 | (1) |
|
4.2 PGMM Family in High-Dimensional Applications |
|
|
64 | (1) |
|
|
65 | (2) |
|
4.4 Clustvarsel and selvarclust |
|
|
67 | (1) |
|
|
68 | (1) |
|
|
69 | (2) |
|
|
71 | (5) |
|
|
71 | (1) |
|
|
71 | (3) |
|
|
74 | (1) |
|
4.7.4 Wisconsin Breast Cancer Data |
|
|
74 | (1) |
|
|
75 | (1) |
|
|
76 | (3) |
|
5 Mixtures of Distributions with Varying Tail Weight |
|
|
79 | (20) |
|
5.1 Mixtures of Multivariate t-Distributions |
|
|
79 | (3) |
|
5.2 Mixtures of Power Exponential Distributions |
|
|
82 | (7) |
|
|
89 | (5) |
|
|
89 | (1) |
|
|
89 | (1) |
|
|
89 | (1) |
|
|
90 | (2) |
|
|
92 | (1) |
|
5.3.6 Leptograpsus Crabs Data |
|
|
93 | (1) |
|
|
94 | (5) |
|
6 Mixtures of Generalized Hyperbolic Distributions |
|
|
99 | (24) |
|
|
99 | (1) |
|
6.2 Generalized Inverse Gaussian Distribution |
|
|
99 | (2) |
|
|
99 | (1) |
|
6.2.2 An Alternative Parameterization |
|
|
100 | (1) |
|
6.3 Mixtures of Shifted Asymmetric Laplace Distributions |
|
|
101 | (5) |
|
6.3.1 Shifted Asymmetric Laplace Distribution |
|
|
101 | (1) |
|
6.3.2 Parameter Estimation |
|
|
102 | (2) |
|
6.3.3 SAL Mixtures versus Gaussian Mixtures |
|
|
104 | (2) |
|
6.4 Mixture of Generalized Hyperbolic Distributions |
|
|
106 | (5) |
|
6.4.1 Generalized Hyperbolic Distribution |
|
|
106 | (2) |
|
6.4.2 Parameter Estimation |
|
|
108 | (3) |
|
6.5 Mixture of Generalized Hyperbolic Factor Analyzers |
|
|
111 | (4) |
|
|
111 | (1) |
|
6.5.2 Parameter Estimation |
|
|
111 | (3) |
|
6.5.3 Analogy with the Gaussian Solution |
|
|
114 | (1) |
|
|
115 | (4) |
|
|
115 | (1) |
|
|
116 | (2) |
|
|
118 | (1) |
|
|
118 | (1) |
|
6.7 A Note on Normal Variance-Mean Mixtures |
|
|
119 | (1) |
|
|
120 | (3) |
|
7 Mixtures of Multiple Scaled Distributions |
|
|
123 | (16) |
|
|
123 | (1) |
|
7.2 Mixture of Multiple Scaled t-Distributions |
|
|
124 | (2) |
|
7.3 Mixture of Multiple Scaled SAL Distributions |
|
|
126 | (1) |
|
7.4 Mixture of Multiple Scaled Generalized Hyperbolic Distributions |
|
|
127 | (1) |
|
7.5 Mixture of Coalesced Generalized Hyperbolic Distributions |
|
|
128 | (1) |
|
|
129 | (3) |
|
|
132 | (5) |
|
|
132 | (1) |
|
7.7.2 Other Clustering Examples |
|
|
133 | (2) |
|
7.7.3 Classification and Discriminant Analysis Examples |
|
|
135 | (2) |
|
|
137 | (2) |
|
8 Methods for Longitudinal Data |
|
|
139 | (18) |
|
8.1 Modified Cholesky Decomposition |
|
|
139 | (1) |
|
8.2 Gaussian Mixture Modelling of Longitudinal Data |
|
|
140 | (8) |
|
|
140 | (1) |
|
|
141 | (1) |
|
|
141 | (3) |
|
|
144 | (1) |
|
8.2.3 Constraining Sub-Diagonals of Tg |
|
|
145 | (1) |
|
|
145 | (2) |
|
|
147 | (1) |
|
8.2.4 Modelling the Component Means |
|
|
147 | (1) |
|
|
148 | (2) |
|
|
150 | (6) |
|
|
150 | (3) |
|
|
153 | (3) |
|
|
156 | (1) |
|
|
157 | (24) |
|
9.1 On the Definition of a Cluster |
|
|
157 | (2) |
|
9.2 What Is the Best Way to Perform Clustering, Classification, and Discriminant Analysis? |
|
|
159 | (3) |
|
9.3 Mixture Model Averaging |
|
|
162 | (2) |
|
|
164 | (2) |
|
9.5 Clustering Categorical Data |
|
|
166 | (2) |
|
9.6 Cluster-Weighted Models |
|
|
168 | (1) |
|
|
169 | (3) |
|
9.7.1 A Mixture of Latent Variables Model |
|
|
169 | (1) |
|
9.7.2 Illustration: Urinary System Disease Diagnosis |
|
|
170 | (2) |
|
9.8 Alternatives to the EM Algorithm |
|
|
172 | (2) |
|
9.8.1 Variational Bayes Approximations |
|
|
172 | (1) |
|
|
173 | (1) |
|
9.9 Challenges and Open Questions |
|
|
174 | (3) |
Appendix |
|
177 | (4) |
|
A.1 Linear Algebra Results |
|
|
177 | (1) |
|
A.2 Matrix Calculus Results |
|
|
178 | (1) |
|
A.3 Method of Lagrange Multipliers |
|
|
179 | (2) |
References |
|
181 | (24) |
Index |
|
205 | |