Atjaunināt sīkdatņu piekrišanu

E-grāmata: Mod-? Convergence: Normality Zones and Precise Deviations

  • Formāts - PDF+DRM
  • Cena: 45,20 €*
  • * ši ir gala cena, t.i., netiek piemērotas nekādas papildus atlaides
  • Ielikt grozā
  • Pievienot vēlmju sarakstam
  • Šī e-grāmata paredzēta tikai personīgai lietošanai. E-grāmatas nav iespējams atgriezt un nauda par iegādātajām e-grāmatām netiek atmaksāta.

DRM restrictions

  • Kopēšana (kopēt/ievietot):

    nav atļauts

  • Drukāšana:

    nav atļauts

  • Lietošana:

    Digitālo tiesību pārvaldība (Digital Rights Management (DRM))
    Izdevējs ir piegādājis šo grāmatu šifrētā veidā, kas nozīmē, ka jums ir jāinstalē bezmaksas programmatūra, lai to atbloķētu un lasītu. Lai lasītu šo e-grāmatu, jums ir jāizveido Adobe ID. Vairāk informācijas šeit. E-grāmatu var lasīt un lejupielādēt līdz 6 ierīcēm (vienam lietotājam ar vienu un to pašu Adobe ID).

    Nepieciešamā programmatūra
    Lai lasītu šo e-grāmatu mobilajā ierīcē (tālrunī vai planšetdatorā), jums būs jāinstalē šī bezmaksas lietotne: PocketBook Reader (iOS / Android)

    Lai lejupielādētu un lasītu šo e-grāmatu datorā vai Mac datorā, jums ir nepieciešamid Adobe Digital Editions (šī ir bezmaksas lietotne, kas īpaši izstrādāta e-grāmatām. Tā nav tas pats, kas Adobe Reader, kas, iespējams, jau ir jūsu datorā.)

    Jūs nevarat lasīt šo e-grāmatu, izmantojot Amazon Kindle.

The canonical way to establish the central limit theorem for i.i.d. random variables is to use characteristic functions and Lévy"s continuity theorem. This monograph focuses on this characteristic function approach and presents a renormalization theory called mod- convergence. This type of convergence is a relatively new concept with many deep ramifications, and has not previously been published in a single accessible volume. The authors construct an extremely flexible framework using this concept in order to study limit theorems and large deviations for a number of probabilistic models related to classical probability, combinatorics, non-commutative random variables, as well as geometric and number-theoretical objects. Intended for researchers in probability theory, the text is carefully well-written and well-structured, containing a great amount of detail and interesting examples. 

Preface.- Introduction.- Preliminaries.- Fluctuations in the case of lattice distributions.- Fluctuations in the non-lattice case.- An extended deviation result from bounds on cumulants.- A precise version of the Ellis-Gärtner theorem.- Examples with an explicit generating function.- Mod-Gaussian convergence from a factorisation of the PGF.- Dependency graphs and mod-Gaussian convergence.- Subgraph count statistics in Erdös-Rényi random graphs.- Random character values from central measures on partitions.- Bibliography.

Recenzijas

The book is well written and mathematically rigorous. They authors collect a large variety of results and try to parallel the theory with applications and they do this rather successfully. It may become a standard reference for researchers working on the topic of central limit theorems and large deviation. this is a useful book for a researcher in probability theory and mathematical statistics. It is very carefully written and collects many new results. (Nikolai N. Leonenko, zbMATH 1387.60003, 2018) This beautiful book (together with other publications by these authors) opens a new way of proving limit theorems in probability theory and related areas such as probabilistic number theory, combinatorics, and statistical mechanics. It will be useful to researchers in these and many other areas. (Zakhar Kabluchko, Mathematical Reviews, September, 2017)

Preface.- Introduction.- Preliminaries.- Fluctuations in the case of
lattice distributions.- Fluctuations in the non-lattice case.- An extended
deviation result from bounds on cumulants.- A precise version of the
Ellis-Gärtner theorem.- Examples with an explicit generating
function.- Mod-Gaussian convergence from a factorisation of the
PGF.- Dependency graphs and mod-Gaussian convergence.- Subgraph count
statistics in Erdös-Rényi random graphs.- Random character values from
central measures on partitions.- Bibliography.