Atjaunināt sīkdatņu piekrišanu

Model Predictive Control of Wastewater Systems [Hardback]

  • Formāts: Hardback, 217 pages, height x width: 235x155 mm, weight: 587 g, XXX, 217 p., 1 Hardback
  • Sērija : Advances in Industrial Control
  • Izdošanas datums: 24-Sep-2010
  • Izdevniecība: Springer London Ltd
  • ISBN-10: 1849963525
  • ISBN-13: 9781849963527
  • Hardback
  • Cena: 91,53 €*
  • * ši ir gala cena, t.i., netiek piemērotas nekādas papildus atlaides
  • Standarta cena: 107,69 €
  • Ietaupiet 15%
  • Grāmatu piegādes laiks ir 3-4 nedēļas, ja grāmata ir uz vietas izdevniecības noliktavā. Ja izdevējam nepieciešams publicēt jaunu tirāžu, grāmatas piegāde var aizkavēties.
  • Daudzums:
  • Ielikt grozā
  • Piegādes laiks - 4-6 nedēļas
  • Pievienot vēlmju sarakstam
  • Formāts: Hardback, 217 pages, height x width: 235x155 mm, weight: 587 g, XXX, 217 p., 1 Hardback
  • Sērija : Advances in Industrial Control
  • Izdošanas datums: 24-Sep-2010
  • Izdevniecība: Springer London Ltd
  • ISBN-10: 1849963525
  • ISBN-13: 9781849963527
The series Advances in Industrial Control aims to report and encourage technology transfer in control engineering. The rapid development of control technology has an impact on all areas of the control discipline. New theory, new controllers, actuators, sensors, new industrial processes, computer methods, new applications, new philosophies , new challenges. Much of this development work resides in industrial reports, feasibility study papers and the reports of advanced collaborative projects. The series offers an opportunity for researchers to present an extended exposition of such new work in all aspects of industrial control for wider and rapid dissemination. The water and wastewater industry has undergone many changes in recent years. Of particular importance has been a renewed emphasis on improving resource management with tighter regulatory controls setting new targets on pricing, industry efficiency and loss reduction for both water and wastewater with more stringent environmental discharge conditions for wastewater. Meantime, the demand for water and wastewater services grows as the population increases and wishes for improved living conditions involving, among other items, domestic appliances that use water. Consequently, the installed infrastructure of the industry has to be continuously upgraded and extended, and employed more effectively to accommodate the new demands, both in throughput and in meeting the new regulatory conditions. Investment in fixed infrastructure is capital-intensive and slow to come on-stream. One outcome of these changes and demands is that the industry is examining the potential benefits of, and in many cases using, more advanced control systems.
1 Introduction
1(14)
1.1 Motivation
1(5)
1.1.1 Sewer Networks as Complex Systems
2(2)
1.1.2 Model Predictive Control
4(2)
1.1.3 Fault-tolerant Control
6(1)
1.2 Main Objectives of the Book
6(1)
1.3 Outline of the Book
7(8)
Part I Background and Case Study Modelling
2 Background
15(26)
2.1 Sewer Networks: Definitions and Real-time Control
15(11)
2.1.1 Description and Main Concepts
15(7)
2.1.2 RTC of Sewage Systems
22(4)
2.2 MPC and Hybrid Systems
26(6)
2.2.1 MPC Strategy Description
26(3)
2.2.2 Hybrid Systems
29(1)
2.2.3 MPC Problem and Hybrid Systems
30(2)
2.3 Fault-tolerance Mechanisms
32(8)
2.3.1 Fault Tolerance by Adapting the Control Strategy
33(5)
2.3.2 Fault Tolerance by Repositioning Sensors and / or Actuators
38(2)
2.4 Summary
40(1)
3 Principles of the Mathematical Modelling of Sewer Networks
41(20)
3.1 Fundamentals of the Mathematical Model
41(5)
3.1.1 Virtual and Real Tanks
43(1)
3.1.2 Manipulated Gates
44(1)
3.1.3 Weirs (Nodes) and Sewage Pipes
45(1)
3.2 Calibration of Model Parameters
46(2)
3.3 Description of the Case Study
48(8)
3.3.1 Barcelona's Sewer Network
48(2)
3.3.2 Barcelona Test Catchment
50(5)
3.3.3 Rain Episodes
55(1)
3.4 Summary
56(5)
Part II Model Predictive Control of Sewer Networks
4 Formulating the Model Predictive Control Problem
61(18)
4.1 General Considerations
61(2)
4.2 Control Problem Formulation
63(3)
4.2.1 Control Objectives
64(1)
4.2.2 Cost Function Formulation
64(2)
4.2.3 Control Problem Constraints
66(1)
4.3 Multi-Objective Optimisation
66(3)
4.4 Closed-loop System Configuration
69(4)
4.4.1 Model Definition
69(1)
4.4.2 Simulation of Scenarios
70(2)
4.4.3 Criteria for Comparison
72(1)
4.5 Discussion of the Results
73(4)
4.6 Summary
77(2)
5 MPC Problem Formulation and Hybrid Systems
79(26)
5.1 Hybrid Modelling Methodology
80(15)
5.1.1 Virtual Tanks (VT)
80(2)
5.1.2 Real Tanks with Input Gates (RTIG)
82(5)
5.1.3 Redirection Gates (RG)
87(4)
5.1.4 Sewage Pipes (SP)
91(1)
5.1.5 The Entire MLD Catchment Model
92(3)
5.2 Predictive Control Strategy
95(2)
5.2.1 Control Objectives
95(1)
5.2.2 Cost Function
95(1)
5.2.3 Problem Constraints
96(1)
5.2.4 MIPC Problem
96(1)
5.3 Simulation and Results
97(5)
5.3.1 Preliminaries
97(1)
5.3.2 MLD Model Descriptions and Controller Set-up
98(3)
5.3.3 Performance Improvement
101(1)
5.4 Summary
102(3)
6 Suboptimal Hybrid Model Predictive Control
105(34)
6.1 Motivation
105(4)
6.2 General Aspects
109(3)
6.2.1 Phase Transitions in MIP Problems
109(2)
6.2.2 Strategies to Deal with the Complexity of HMPC
111(1)
6.3 HMPC Incorporating Mode Sequence Constraints
112(8)
6.3.1 Description of the Approach
112(5)
6.3.2 Practical Issues
117(3)
6.4 Suboptimal HMPC Strategy for Sewer Networks
120(5)
6.4.1 Suboptimal Strategy Set-up
120(1)
6.4.2 Simulation of Scenarios
121(1)
6.4.3 Main Results
122(3)
6.5 Suboptimal MPC Approach Based on Piecewise Linear Functions
125(9)
6.5.1 PWLF Modelling Approach
127(3)
6.5.2 Simulations and Results
130(4)
6.6 Summary
134(5)
Part III Fault-tolerance Capabilities of Model Predictive Control
7 Model Predictive Control and Fault Tolerance
139(28)
7.1 General Aspects
139(2)
7.2 Fault-tolerant Control and Hybrid Systems
141(2)
7.3 Fault-tolerance Capabilities of MPC
143(2)
7.3.1 Implicit Capabilities
143(2)
7.3.2 Explicit Capabilities
145(1)
7.4 Including Fault Tolerance in HMPC
145(8)
7.4.1 Implicit Fault-tolerant HMPC
146(3)
7.4.2 Explicit Fault-tolerant HMPC
149(1)
7.4.3 An Illustrative Example
150(3)
7.5 Some FTHMPC Implementation Schemes
153(2)
7.6 Fault-tolerant HMPC of Sewer Networks
155(9)
7.6.1 Fault Scenarios
155(2)
7.6.2 Linear Plant Models and Actuator Faults
157(1)
7.6.3 Hybrid Modelling and Actuator Faults
157(3)
7.6.4 Implementation and Results
160(4)
7.7 Summary
164(3)
8 Fault-tolerance Evaluation of Actuator Fault Configurations
167(28)
8.1 Introduction
167(1)
8.2 Preliminary Definitions
168(2)
8.3 Admissibility Evaluation Approaches
170(12)
8.3.1 Admissibility Evaluation Using Constraint Satisfaction
170(5)
8.3.2 Admissibility Evaluation Using Set Computation
175(7)
8.4 Actuator Fault Tolerance Evaluation in Sewer Networks
182(5)
8.4.1 System Description
182(3)
8.4.2 Control Objectives and Admissibility Criterion
185(1)
8.4.3 Main Results
186(1)
8.5 Summary
187(8)
Part IV Concluding Remarks
9 Concluding Remarks
195(6)
9.1 Final Discussion
195(3)
9.2 Possible Directions for Future Research
198(3)
References 201(12)
Index 213