Atjaunināt sīkdatņu piekrišanu

E-grāmata: Modeling Contextual Effects in Longitudinal Studies

Edited by , Edited by , Edited by
  • Formāts: 392 pages
  • Izdošanas datums: 21-Mar-2007
  • Izdevniecība: Routledge
  • ISBN-13: 9781135594176
  • Formāts - EPUB+DRM
  • Cena: 67,61 €*
  • * ši ir gala cena, t.i., netiek piemērotas nekādas papildus atlaides
  • Ielikt grozā
  • Pievienot vēlmju sarakstam
  • Šī e-grāmata paredzēta tikai personīgai lietošanai. E-grāmatas nav iespējams atgriezt un nauda par iegādātajām e-grāmatām netiek atmaksāta.
  • Formāts: 392 pages
  • Izdošanas datums: 21-Mar-2007
  • Izdevniecība: Routledge
  • ISBN-13: 9781135594176

DRM restrictions

  • Kopēšana (kopēt/ievietot):

    nav atļauts

  • Drukāšana:

    nav atļauts

  • Lietošana:

    Digitālo tiesību pārvaldība (Digital Rights Management (DRM))
    Izdevējs ir piegādājis šo grāmatu šifrētā veidā, kas nozīmē, ka jums ir jāinstalē bezmaksas programmatūra, lai to atbloķētu un lasītu. Lai lasītu šo e-grāmatu, jums ir jāizveido Adobe ID. Vairāk informācijas šeit. E-grāmatu var lasīt un lejupielādēt līdz 6 ierīcēm (vienam lietotājam ar vienu un to pašu Adobe ID).

    Nepieciešamā programmatūra
    Lai lasītu šo e-grāmatu mobilajā ierīcē (tālrunī vai planšetdatorā), jums būs jāinstalē šī bezmaksas lietotne: PocketBook Reader (iOS / Android)

    Lai lejupielādētu un lasītu šo e-grāmatu datorā vai Mac datorā, jums ir nepieciešamid Adobe Digital Editions (šī ir bezmaksas lietotne, kas īpaši izstrādāta e-grāmatām. Tā nav tas pats, kas Adobe Reader, kas, iespējams, jau ir jūsu datorā.)

    Jūs nevarat lasīt šo e-grāmatu, izmantojot Amazon Kindle.

Longitudinal data are critical for understanding how individuals change across time. Researchers are faced with a complex task when modeling the contexts in which longitudinal processes unfold. Modeling Contextual Effects in Longitudinal Studies reviews the challenges and alternative approaches to modeling these influences and provides methodologies and data analytic strategies for behavioral and social science researchers.
This accessible guide provides concrete, clear examples of how contextual factors can be included in most research studies. Each chapter can be understood independently, allowing readers to first focus on areas most relevant to their work. The opening chapter demonstrates the various ways contextual factors are represented—as covariates, predictors, outcomes, moderators, mediators, or mediated effects. Succeeding chapters review "best practice" techniques for treating missing data, making model comparisons, and scaling across developmental age ranges. Other chapters focus on specific statistical techniques such as multilevel modeling and multiple-group and multilevel SEM, and how to incorporate tests of mediation, moderation, and moderated mediation. Critical measurement and theoretical issues are discussed, particularly how age can be represented and the ways in which context can be conceptualized. The final chapter provides a compelling call to include contextual factors in theorizing and research.

Modeling Contextual Effects in Longitudinal Studies
will appeal to researchers and advanced students conducting developmental, social, clinical, or educational research, as well as those in related areas such as psychology and linguistics.
Preface vii
1. Modeling Ecological and Contextual Effects in Longitudinal Studies of Human Development
Noel A. Card, Todd D. Little and James A. Bovaird
1
2. Statistical Analysis With Incomplete Data: A Developmental Perspective
Scott M. Hofer and Lesa Hoffman
13
3. Alternatives to Traditional Model Comparison Strategies for Covariance Structure Models
Kristopher J. Preacher, Li Cai and Robert C. Mac Callum
33
4. Impact of Measurement Scale in Modeling Developmental Processes and Ecological Factors
Susan E. Embretson
63
5. The Incorporation of Categorical Measurement Models in the Analysis of Individual Growth
Patrick J. Curran, Michael C. Edwards, R.J. Wirth, Andrea M. Hussong and Laurie Chassin
89
6. Representing Contextual Effects in Multiple-Group MACS Models
Todd D. Little, Noel A. Card, David W. Slegers and Emily C. Ledford
121
7. Multilevel Structural Equation Models for Contextual Factors
James A. Bovaird
149
8. Mixed-Effects Regression Models With Heterogeneous Variance: Analyzing Ecological Momentary Assessment (EMA) Data
Donald Hedeker and Robin J. Mermelstein
183
9. Structural Equation Modeling of Mediation and Moderation With Contextual Factors
Todd D. Little, Noel A. Card, James A. Bovaird, Kristopher J. Preacher and Christian S. Crandall
207
10. Moderating Effects of a Risk Factor: Modeling Longitudinal Moderated Mediation in the Development of Adolescent Heavy Drinking
David B. Flora, Siek Toon Khoo and Laurie Chassin
231
11. Modeling Complex Interactions: Person-Centered and Variable-Centered Approaches
Daniel J. Bauer and Michael J. Shanahan
255
12. Accounting for Statistical Dependency in Longitudinal Data on Dyads
Niall Bolger and Patrick E. Shrout
285
13. Coupled Dynamics and Mutually Adaptive Context
Steven M. Boker and Jean-Phillipe Laurenceau
299
14. Modeling Intraindividual and Intracontextual Change: Rendering Developmental Contextualism Operational
Nilam Ram and John R Nesselroade
325
15. The Shape of Things to Come: Diagnosing Social Contagion From Adolescent Smoking and Drinking Curves
Joseph Lee Rodgers
343
16. A Dynamic Structural Analysis of the Impacts of Context on Shifts in Lifespan Cognitive Development
Kevin J. Grimm and John J. McArdle
363
17. Intrauterine Environment Affects Infant and Child Outcomes: Environment as Direct Effect
Keith F. Widaman
387
18. Conceptualizing and Measuring the Context Within Person [ --> Context Models of Human Development: Implications for Theory, Research and Application
Helena Jelicic, Christina Theokas, Erin Phelps and Richard M. Lerner
437
Author Index 457
Subject Index 469


Todd D. Little is Director of the Research Design Unit and the Quantitative Psychology Doctoral training Program and a Professor of Psychology at the University of Kansas. He received his Ph.D. in developmental and quantitative psychology at the University of California - Riverside. Dr. Little has extensive experience in the use of longitudinal research methods, and he has edited several LEA books on the subject.

James A. Bovaird is an Assistant Professor in Educational Psychology at the University of Nebraska - Lincoln. He received his Ph.D. in quantitative psychology at the University of Kansas. His quantitative interests are in the application of latent variable methodologies to novel substantive areas and the evaluation of these methodologies in situations of limited inference.

Noel A. Card is an Assistant Professor in the Division of Family Studies and Human Development at the University of Arizona. He received his Ph.D. in clinical psychology from St. Johns University. His quantitative interests are structural equation modeling, longitudinal design and analysis, meta-analysis, and analyzing interdependent data.