Atjaunināt sīkdatņu piekrišanu

E-grāmata: Modeling, Optimization, and Control of Zinc Hydrometallurgical Purification Process

(School of Automation, Central South University), (School of Automation, Central South University)
  • Formāts - EPUB+DRM
  • Cena: 203,82 €*
  • * ši ir gala cena, t.i., netiek piemērotas nekādas papildus atlaides
  • Ielikt grozā
  • Pievienot vēlmju sarakstam
  • Šī e-grāmata paredzēta tikai personīgai lietošanai. E-grāmatas nav iespējams atgriezt un nauda par iegādātajām e-grāmatām netiek atmaksāta.

DRM restrictions

  • Kopēšana (kopēt/ievietot):

    nav atļauts

  • Drukāšana:

    nav atļauts

  • Lietošana:

    Digitālo tiesību pārvaldība (Digital Rights Management (DRM))
    Izdevējs ir piegādājis šo grāmatu šifrētā veidā, kas nozīmē, ka jums ir jāinstalē bezmaksas programmatūra, lai to atbloķētu un lasītu. Lai lasītu šo e-grāmatu, jums ir jāizveido Adobe ID. Vairāk informācijas šeit. E-grāmatu var lasīt un lejupielādēt līdz 6 ierīcēm (vienam lietotājam ar vienu un to pašu Adobe ID).

    Nepieciešamā programmatūra
    Lai lasītu šo e-grāmatu mobilajā ierīcē (tālrunī vai planšetdatorā), jums būs jāinstalē šī bezmaksas lietotne: PocketBook Reader (iOS / Android)

    Lai lejupielādētu un lasītu šo e-grāmatu datorā vai Mac datorā, jums ir nepieciešamid Adobe Digital Editions (šī ir bezmaksas lietotne, kas īpaši izstrādāta e-grāmatām. Tā nav tas pats, kas Adobe Reader, kas, iespējams, jau ir jūsu datorā.)

    Jūs nevarat lasīt šo e-grāmatu, izmantojot Amazon Kindle.

Modeling, Optimization and Control of Zinc Hydrometallurgical Purification Process provides a clear picture on how to develop a mathematical model for complex industrial processes, how to design the optimization strategy, and how to apply control methods in order to achieve desired production target. This book shares the authors’ recent ideas/methodologies/algorithms on the intelligent manufacturing of complex industry processes, e.g., how to develop a descriptive framework which could enable the digitalization and visualization of a process and how to develop the controller when the process model is not available.
  • Presents an extended state-space descriptive framework for complex industrial processes
  • Presents scientific problems extracted from real industrial process
  • Proposes novel modeling and control tools for intelligent manufacturing of continuous industries

Part I Background
1. Introduction
2. Modeling and optimal control framework for the solution purification process

Part II Modeling and optimal control of the copper removal process
3. Kinetic modeling of the competitive-consecutive reaction system
4. Additive requirement ratio estimation using trend distribution features
5. Real-time adjustment of zinc powder dosage based on fuzzy logic

Part III Modeling and optimal control of the cobalt removal process
6. Integrated modeling of the cobalt removal process
7. Intelligent optimal setting control of the cobalt removal process
8. Control of the cobalt removal process under multiple working conditions

Part IV System development and future research
9. Intelligent control system development
10. Conclusions and future research

Chunhua Yang has served as a subject matter expert in Advanced Manufacturing Technology (863 Program), a member of Chinese Association of Automation (CAA), a member of the Process Control Technical Committee of CAA, a member of the Technical Committee of Component and Instrument of CAA, a member of the Technical Committee on Control Theory of CAA, Secretary-General of Computer Science Committee in nonferrous Metals Society of China, and Vice-Chair of the IFAC TC 6.2 Mining, Mineral and Metal Processing. She also serves as an associate editor for several journals including Acta Automatica Sinica, Control Theory & Applications, etc. She served as the Chair of the National Organizing Committee in the 5th IFAC workshop on Mining, Mineral and Metal Processing held in Shanghai, August 2018. Prof. Yang has won many prestigious awards and honours, including the Second Prize of National Science and Technology Progress for 3 times Bei Sun obtained his PhD degree in 2015, which was jointly supervised by Central South University and New York University. Since Dec 2015, he is with the School of Information Science and Engineering, Central South University, as a Lecturer. From Dec 2016 to Sep 2018, he is a postdoctoral researcher of the School of Chemical Engineering, Aalto University, Finland. His research interests include process modeling, identification and control, intelligent manufacturing of process industries. He is a recipient of the Fisrt Prize of Science and Technology of the Nonferrous Metals Society of China, and a member of IFAC TC 6.2.