Preface |
|
xiii | |
Acknowledgments |
|
xv | |
About the Author |
|
xvii | |
|
|
1 | (8) |
|
1.1 Theories Underlying Predictive Models |
|
|
1 | (1) |
|
1.3 Reasons for Modeling and Simulation |
|
|
2 | (3) |
|
1.2.1 Alternatives and Their Consequences |
|
|
3 | (1) |
|
1.2.2 Relative Predictive Ability |
|
|
3 | (1) |
|
|
3 | (1) |
|
1.2.4 Hypothesis and Theory Construction |
|
|
3 | (1) |
|
1.2.5 Nonexistent Universes |
|
|
4 | (1) |
|
|
4 | (1) |
|
1.2.7 Planning and Management Decision Aid |
|
|
4 | (1) |
|
1.2.8 System Identification |
|
|
4 | (1) |
|
1.2.9 Unanticipated Effects |
|
|
5 | (1) |
|
1.3 What Does It Take To Be a Modeler? |
|
|
5 | (1) |
|
1.4 Why Models Fail: A Cautionary Note |
|
|
6 | (3) |
|
1.4.1 Poor Data for Parameter Estimation |
|
|
6 | (1) |
|
1.4.2 Uncertainty Not Considered |
|
|
6 | (1) |
|
1.4.3 Bias (Political, Social, Economic) |
|
|
6 | (1) |
|
1.4.4 Lack of Understanding of Real-World Systems |
|
|
6 | (1) |
|
1.4.5 Misuse of Mathematics |
|
|
7 | (1) |
|
|
7 | (2) |
|
Chapter 2 Principles of Modeling and Simulation |
|
|
9 | (22) |
|
|
9 | (2) |
|
|
9 | (1) |
|
2.1.2 System Input and Output |
|
|
9 | (1) |
|
|
9 | (1) |
|
|
10 | (1) |
|
2.1.5 System States: Steady State versus Transient States |
|
|
10 | (1) |
|
2.1.6 Discrete versus Continuous |
|
|
10 | (1) |
|
2.1.7 Linear versus Nonlinear |
|
|
11 | (1) |
|
|
11 | (10) |
|
|
11 | (3) |
|
2.2.1.1 Solution of Ordinary First-Order Differential Equations |
|
|
14 | (2) |
|
2.2.1.2 Steady-State and Transient Response |
|
|
16 | (1) |
|
2.2.1.3 Difference Equation Approximation to Differential Equation |
|
|
16 | (1) |
|
2.2.1.4 Numerical Solutions to Differential Equations |
|
|
17 | (1) |
|
|
18 | (3) |
|
|
21 | (1) |
|
2.2.4 Individual-Based Models |
|
|
21 | (1) |
|
|
21 | (1) |
|
|
21 | (10) |
|
2.3.1 Principles of Simulation |
|
|
23 | (1) |
|
2.3.1.1 Principle of Communication |
|
|
23 | (1) |
|
2.3.1.2 Principle of Modularity |
|
|
23 | (1) |
|
2.3.1.3 A Modified Principle of Parsimony |
|
|
23 | (1) |
|
2.3.2 Steps in Simulation |
|
|
23 | (1) |
|
2.3.2.1 Problem Definition |
|
|
24 | (1) |
|
2.3.2.2 Model Development |
|
|
24 | (1) |
|
2.3.2.3 Model Implementation |
|
|
24 | (3) |
|
2.3.2.4 Data Requirements |
|
|
27 | (1) |
|
|
27 | (1) |
|
2.3.2.6 Design of Simulation Experiments |
|
|
28 | (1) |
|
2.3.2.7 Analyze Results of Simulation Experiments |
|
|
28 | (1) |
|
2.3.2.8 Presentation and Implementation of Results |
|
|
28 | (1) |
|
|
28 | (3) |
|
Chapter 3 Introduction to MATLAB® and Simulink® |
|
|
31 | (16) |
|
|
31 | (12) |
|
|
32 | (2) |
|
|
34 | (3) |
|
|
37 | (2) |
|
|
39 | (1) |
|
|
40 | (3) |
|
|
43 | (4) |
|
|
44 | (1) |
|
|
45 | (2) |
|
Chapter 4 Introduction to Stochastic Modeling |
|
|
47 | (26) |
|
4.1 Introduction to Probability Distributions |
|
|
47 | (3) |
|
4.2 Example Probability Distributions |
|
|
50 | (15) |
|
4.2.1 Continuous Distributions |
|
|
50 | (1) |
|
|
50 | (1) |
|
|
51 | (1) |
|
|
51 | (2) |
|
|
53 | (1) |
|
|
53 | (1) |
|
|
54 | (1) |
|
|
54 | (2) |
|
|
56 | (1) |
|
|
56 | (2) |
|
4.2.2 Discrete Distributions |
|
|
58 | (1) |
|
|
58 | (1) |
|
|
59 | (1) |
|
|
60 | (1) |
|
|
60 | (2) |
|
4.2.2.5 Negative Binomial |
|
|
62 | (1) |
|
|
62 | (2) |
|
4.2.3 Empirical Distributions |
|
|
64 | (1) |
|
4.3 Discrete-State Markov Processes |
|
|
65 | (4) |
|
4.4 Monte Carlo Simulation |
|
|
69 | (4) |
|
|
71 | (1) |
|
|
72 | (1) |
|
Chapter 5 Modeling Ecotoxicology of Individuals |
|
|
73 | (36) |
|
5.1 Toxic Effects on Individuals |
|
|
73 | (36) |
|
5.1.1 The Dose-Response Relationship |
|
|
73 | (1) |
|
|
73 | (5) |
|
|
78 | (1) |
|
|
78 | (1) |
|
5.1.3 Physiological Processes |
|
|
79 | (1) |
|
|
79 | (3) |
|
|
82 | (4) |
|
|
86 | (1) |
|
|
87 | (1) |
|
5.1.4 Biological Processes |
|
|
88 | (1) |
|
|
88 | (2) |
|
|
90 | (5) |
|
|
95 | (3) |
|
|
98 | (2) |
|
|
100 | (5) |
|
|
105 | (1) |
|
|
106 | (3) |
|
Chapter 6 Modeling Ecotoxicology of Populations, Communities, and Ecosystems |
|
|
109 | (16) |
|
6.1 Effects of Toxicants on Aggregated Populations |
|
|
109 | (4) |
|
6.2 Effects of Toxicants on Age-Structured Populations |
|
|
113 | (2) |
|
6.3 Effects of Toxicants on Communities |
|
|
115 | (4) |
|
6.4 Effects of Toxicants on Ecosystems |
|
|
119 | (6) |
|
|
123 | (1) |
|
|
124 | (1) |
|
Chapter 7 Parameter Estimation |
|
|
125 | (22) |
|
|
125 | (11) |
|
|
126 | (3) |
|
|
129 | (3) |
|
|
132 | (4) |
|
|
136 | (8) |
|
|
136 | (8) |
|
7.3 Comparison between Linear and Nonlinear Regressions |
|
|
144 | (3) |
|
|
145 | (1) |
|
|
145 | (2) |
|
Chapter 8 Designing Simulation Experiments |
|
|
147 | (12) |
|
|
147 | (4) |
|
8.1.1 Full Factorial Designs |
|
|
147 | (2) |
|
8.1.2 Fractional Factorial |
|
|
149 | (2) |
|
8.2 Response Surface Designs |
|
|
151 | (8) |
|
8.2.1 Central Composite Designs |
|
|
152 | (3) |
|
8.2.2 Box-Behnken Designs |
|
|
155 | (3) |
|
|
158 | (1) |
|
|
158 | (1) |
|
Chapter 9 Analysis of Simulation Experiments |
|
|
159 | (16) |
|
9.1 Simulation Output Analysis |
|
|
159 | (3) |
|
9.1.1 Types of Simulations |
|
|
159 | (1) |
|
9.1.2 Output Analysis Methods |
|
|
159 | (3) |
|
|
162 | (4) |
|
|
163 | (2) |
|
|
165 | (1) |
|
|
165 | (1) |
|
|
166 | (1) |
|
|
166 | (2) |
|
9.4 Response Surface Methodology |
|
|
168 | (7) |
|
|
173 | (1) |
|
|
174 | (1) |
|
Chapter 10 Model Validation |
|
|
175 | (16) |
|
10.1 Validation and Reasons for Modeling and Simulation |
|
|
175 | (1) |
|
|
176 | (3) |
|
10.2.1 Accept the Null Hypothesis When It Is True |
|
|
177 | (1) |
|
10.2.2 Reject the Null Hypothesis When It Is True |
|
|
177 | (1) |
|
10.2.3 Accept the Null Hypothesis When It Is False |
|
|
177 | (1) |
|
10.2.4 Reject the Null Hypothesis When It Is False |
|
|
177 | (1) |
|
10.2.5 Accept the Null Hypothesis When It Is True |
|
|
178 | (1) |
|
10.2.6 Reject the Null Hypothesis When It Is True |
|
|
178 | (1) |
|
10.2.7 Accept the Null Hypothesis When It Is False |
|
|
178 | (1) |
|
10.2.8 Reject the Null Hypothesis When It Is False |
|
|
179 | (1) |
|
10.3 Statistical Techniques |
|
|
179 | (1) |
|
|
180 | (11) |
|
|
180 | (1) |
|
10.4.2 Wilcoxon Nonparametric Signed Rank Test |
|
|
180 | (3) |
|
|
183 | (1) |
|
10.4.4 Theil's Inequality Coefficient |
|
|
184 | (2) |
|
10.4.5 Analysis of Variance |
|
|
186 | (1) |
|
10.4.6 Kruskal-Wallis Nonparametric ANOVA |
|
|
186 | (3) |
|
|
189 | (1) |
|
|
190 | (1) |
|
Chapter 11 A Model to Predict the Effects of Insecticides on Avian Populations |
|
|
191 | (18) |
|
|
191 | (1) |
|
|
191 | (1) |
|
11.3 Model Implementation |
|
|
191 | (5) |
|
|
192 | (1) |
|
11.3.1.1 Ingestion in Food |
|
|
192 | (1) |
|
11.3.1.2 Consumption of Chlorpyrifos Granules |
|
|
193 | (1) |
|
11.3.1.3 Avian Loss Rates |
|
|
194 | (1) |
|
|
195 | (1) |
|
11.3.2 Model Structure Validation |
|
|
195 | (1) |
|
11.3.3 Programming the Computer Code |
|
|
196 | (1) |
|
|
196 | (4) |
|
|
196 | (1) |
|
11.4.1.1 Proportion of Components in Diet |
|
|
196 | (1) |
|
11.4.1.2 Granule Consumption Rate |
|
|
196 | (1) |
|
11.4.1.3 Time Spent in Treated Areas |
|
|
197 | (1) |
|
11.4.1.4 Residues in Diet Components |
|
|
198 | (1) |
|
|
199 | (1) |
|
|
199 | (1) |
|
|
200 | (1) |
|
11.6 Design Simulation Experiments |
|
|
200 | (1) |
|
11.7 Analyze Results of Simulation Experiments |
|
|
201 | (8) |
|
|
201 | (1) |
|
11.7.1.1 Ring-Necked Pheasant |
|
|
201 | (1) |
|
11.7.1.2 Northern Bobwhite |
|
|
201 | (1) |
|
11.7.1.3 Red-Winged Blackbird |
|
|
201 | (2) |
|
|
203 | (1) |
|
11.7.2 Predicted Mortality |
|
|
203 | (4) |
|
|
207 | (2) |
|
Chapter 12 Case Study: Predicting Health Risk to Bottlenose Dolphins from Exposure to Oil Spill Toxicants |
|
|
209 | (14) |
|
|
209 | (1) |
|
|
209 | (2) |
|
12.3 Model Implementation |
|
|
211 | (5) |
|
12.3.1 Differential Equations |
|
|
211 | (5) |
|
|
216 | (1) |
|
|
217 | (1) |
|
12.6 Design of Simulation Experiments |
|
|
217 | (1) |
|
12.7 Analyze Results of Simulation Experiments |
|
|
217 | (3) |
|
|
217 | (2) |
|
12.7.2 Sensitivity Analysis |
|
|
219 | (1) |
|
12.8 Presentation and Implementation of Results |
|
|
220 | (3) |
|
|
222 | (1) |
|
Chapter 13 Case Study: Simulating the Effects of Temperature Plumes on the Uptake of Mercury in Daphnia |
|
|
223 | (16) |
|
|
223 | (1) |
|
|
223 | (1) |
|
13.3 Model Implementation |
|
|
223 | (2) |
|
|
225 | (8) |
|
|
225 | (1) |
|
|
226 | (1) |
|
13.4.3 Estimate Model Parameters |
|
|
226 | (1) |
|
13.4.4 Gross Uptake Model |
|
|
227 | (1) |
|
13.4.5 Estimate Parameters for Gross Uptake Model |
|
|
228 | (2) |
|
13.4.6 Differential Equation for Mercury Dynamics |
|
|
230 | (1) |
|
13.4.7 Parameters as Functions of Temperature |
|
|
230 | (1) |
|
13.4.8 Estimate Thermal Plume Temperatures |
|
|
231 | (2) |
|
|
233 | (1) |
|
13.6 Design of Simulation Experiments |
|
|
233 | (2) |
|
13.7 Analyze Results of Simulation Experiments |
|
|
235 | (1) |
|
13.8 Presentation and Implementation of Results |
|
|
235 | (4) |
|
|
237 | (2) |
Index |
|
239 | |