Atjaunināt sīkdatņu piekrišanu

Modeling Time-Varying Unconditional Variance by Means of a Free-Knot Spline-GARCH Model 1st ed. 2022 [Mīkstie vāki]

  • Formāts: Paperback / softback, 237 pages, height x width: 210x148 mm, weight: 344 g, 57 Illustrations, color; XXII, 237 p. 57 illus. in color., 1 Paperback / softback
  • Sērija : Gabler Theses
  • Izdošanas datums: 28-Jul-2022
  • Izdevniecība: Springer Gabler
  • ISBN-10: 3658386177
  • ISBN-13: 9783658386177
Citas grāmatas par šo tēmu:
  • Mīkstie vāki
  • Cena: 91,53 €*
  • * ši ir gala cena, t.i., netiek piemērotas nekādas papildus atlaides
  • Standarta cena: 107,69 €
  • Ietaupiet 15%
  • Grāmatu piegādes laiks ir 3-4 nedēļas, ja grāmata ir uz vietas izdevniecības noliktavā. Ja izdevējam nepieciešams publicēt jaunu tirāžu, grāmatas piegāde var aizkavēties.
  • Daudzums:
  • Ielikt grozā
  • Piegādes laiks - 4-6 nedēļas
  • Pievienot vēlmju sarakstam
  • Formāts: Paperback / softback, 237 pages, height x width: 210x148 mm, weight: 344 g, 57 Illustrations, color; XXII, 237 p. 57 illus. in color., 1 Paperback / softback
  • Sērija : Gabler Theses
  • Izdošanas datums: 28-Jul-2022
  • Izdevniecība: Springer Gabler
  • ISBN-10: 3658386177
  • ISBN-13: 9783658386177
Citas grāmatas par šo tēmu:

The book addresses the problem of a time-varying unconditional variance of return processes utilizing a spline function. The knots of the spline functions are estimated as free parameters within a joined estimation process together with the parameters of the mean, the conditional variance and the spline function. With the help of this method, the knots are placed in regions where the unconditional variance is not smooth. The results are tested within an extensive simulation study and an empirical study employing the S&P500 index.

Introduction.- Financial time series.- Smoothing long term
volatility.- 4 Free-knot spline-GARCH model.- Simulation study.- Empirical
study.- Conclusion.
The dissertation was written at the Chair of Applied Statistics and Methods of Empirical Social Research at the Faculty of Economics and Business Administration of the FernUniversität in Hagen. From 2021 Oliver Old researched in the field of applied statistics, machine learning and data science at two EU-Horizon projects at the Department of Anesthesiology, Intensive Care and Pain Therapy at the University Hospital Frankfurt.