Atjaunināt sīkdatņu piekrišanu

E-grāmata: Modelling and Control of Dialysis Systems: Volume 1: Modeling Techniques of Hemodialysis Systems

  • Formāts: PDF+DRM
  • Sērija : Studies in Computational Intelligence 404
  • Izdošanas datums: 04-Aug-2012
  • Izdevniecība: Springer-Verlag Berlin and Heidelberg GmbH & Co. K
  • Valoda: eng
  • ISBN-13: 9783642274589
  • Formāts - PDF+DRM
  • Cena: 213,54 €*
  • * ši ir gala cena, t.i., netiek piemērotas nekādas papildus atlaides
  • Ielikt grozā
  • Pievienot vēlmju sarakstam
  • Šī e-grāmata paredzēta tikai personīgai lietošanai. E-grāmatas nav iespējams atgriezt un nauda par iegādātajām e-grāmatām netiek atmaksāta.
  • Formāts: PDF+DRM
  • Sērija : Studies in Computational Intelligence 404
  • Izdošanas datums: 04-Aug-2012
  • Izdevniecība: Springer-Verlag Berlin and Heidelberg GmbH & Co. K
  • Valoda: eng
  • ISBN-13: 9783642274589

DRM restrictions

  • Kopēšana (kopēt/ievietot):

    nav atļauts

  • Drukāšana:

    nav atļauts

  • Lietošana:

    Digitālo tiesību pārvaldība (Digital Rights Management (DRM))
    Izdevējs ir piegādājis šo grāmatu šifrētā veidā, kas nozīmē, ka jums ir jāinstalē bezmaksas programmatūra, lai to atbloķētu un lasītu. Lai lasītu šo e-grāmatu, jums ir jāizveido Adobe ID. Vairāk informācijas šeit. E-grāmatu var lasīt un lejupielādēt līdz 6 ierīcēm (vienam lietotājam ar vienu un to pašu Adobe ID).

    Nepieciešamā programmatūra
    Lai lasītu šo e-grāmatu mobilajā ierīcē (tālrunī vai planšetdatorā), jums būs jāinstalē šī bezmaksas lietotne: PocketBook Reader (iOS / Android)

    Lai lejupielādētu un lasītu šo e-grāmatu datorā vai Mac datorā, jums ir nepieciešamid Adobe Digital Editions (šī ir bezmaksas lietotne, kas īpaši izstrādāta e-grāmatām. Tā nav tas pats, kas Adobe Reader, kas, iespējams, jau ir jūsu datorā.)

    Jūs nevarat lasīt šo e-grāmatu, izmantojot Amazon Kindle.

The book, to the best of the editor’s knowledge, is the first text of its kind that presents both the traditional and the modern aspects of ‘dialysis modeling and control’ in a clear, insightful and highly comprehensive writing style. It provides an in-depth analysis of the mathematical models and algorithms, and demonstrates their applications in real world problems of significant complexity. The material of this book can be useful to advanced undergraduate and graduate biomedical engineering students. This text provides an important focus on helping students understand how new concepts are related to and rely upon concepts previously presented. Also, researchers and practitioners in the field of dialysis, control systems, soft computing may benefit from it. The material is organized into 32 chapters.This book explains concepts in a clear, matter-of-fact style. In order to make the reader aware of the applied side of the subject, the book includes: Chapter openers with a chapter outline, chapter objectives, key terms list, and abstract. Solved numerical examples to illustrate the application of a particular concept, and also to encourage good problem-solving skills. More than 1000 questions to give the readers a better insight to the subject. Case studies to understand the significance of the joint usage of the dialysis modeling and control techniques in interesting problems of the real world. Summation and deepening of authors works in recent years in the fields related. So the readers can get latest information, including latest research surveys and references related to the subjects through this book. It is hoped that through this book the reader will: Understand the fundamentals of dialysis systems and recognize when it is advantageous to use them. Gain an understanding of the wide range of dialysis modeling techniques Be able to use soft computing techniques in dialysis applications. Gain familiarity with online systems of dialysis and their applications. Recognize the relationship between conceptual understanding and problem-solving approaches. The editors would like to take this opportunity to thank all the authors for their contributions to this textbook. Without the hard work of our contributors, this book would have not been possible. The encouragement and patience of series Editor, Thomas Ditzinger is very much appreciated. Without his continuous help and assistance during the entire course of this project, the production of the book would have taken a great deal longer. This book stands out in its coverage of traditional as well as modern aspects of dialysis modeling and control. It offers in-depth analysis of the mathematical models and algorithms, and demonstrates how to apply them in complex, real-life situations.

Recenzijas

From the reviews:

This is the first volume of a two-volume set that provides an extensive educational resource on the fundamentals of dialysis. The book is designed for a number of courses at undergraduate or graduate levels. It is a unique resource for engineers, system analysts, and biomedical researchers that provides specific and practical information about model and control techniques in the field of dialysis. It also could be useful to nephrologists, nurses, and technicians in the dialysis community. (Jon Webb, Doody's Book Reviews, March, 2013)

Part 1 Overview of Dialysis Treatment and Modeling Techniques
1 Initiation of Dialysis
3(42)
Ahmad Taher Azar
Alicja E. Grzegorzewska
1.1 Structure of Normal Kidneys
4(3)
1.2 Functions of Normal Kidney
7(7)
1.3 Renal Failure
14(8)
1.4 Renal Replacement Therapy (RRT)
22(15)
1.5 Final Remarks and Conclusions
37(8)
References
38(7)
2 Measurement of Renal Function
45(54)
Ahmad Taher Azar
2.1 Stages of Chronic Kidney Disease
46(1)
2.2 Measurement of Residual Renal Function
47(26)
2.3 Glomerular Filtration Rate in Children with Chronic Kidney Disease
73(8)
2.4 Conclusion
81(18)
References 82
3 Hemodialysis System
99(68)
Ahmad Taher Azar
Bernard Canuad
3.1 Principles of Dialysis
100(16)
3.2 Hemodialysis Machine
116(32)
3.3 Advanced Options for Hemodialysis Machines
148(6)
3.4 Conclusion
154(13)
References
155(12)
4 Intensive Hemodialysis in the Clinic and at Home
167(68)
Philip A. McFarlane
4.1 Introduction
168(8)
4.2 The Home Nocturnal Hemodialysis Technique
176(2)
4.3 Rationale for Intensive Hemodialysis
178(9)
4.4 Determining Adequacy of Dialysis in People Undergoing Intensive Hemodialysis
187(14)
4.5 Economic Considerations
201(3)
4.6 Selecting Patients for Intensive Hemodialysis
204(1)
4.7 Candidacy and Home Hemodialysis Requirements
205(9)
4.8 Performing Intensive Hemodialysis Safely
214(4)
4.9 Conclusions
218(17)
References
219(16)
5 Vascular Access for Hemodialysis Therapy
235(70)
A.S. Bode
J.H.M. Tordoir
5.1 End-Stage Renal Disease
236(2)
5.2 History of Vascular Access
238(4)
5.3 Options for Vascular Access
242(18)
5.4 Pre-operative Work-Up
260(6)
5.5 Using Arteriovenous Fistula
266(3)
5.6 Vascular Access Complications and Their Treatment
269(11)
5.7 Hemodynamic Aspects of Arteriovenous Fistulas
280(6)
5.8 Conclusion and Future Directions for Vascular Access
286(19)
References
287(18)
6 Access Flow Monitoring Methods
305(42)
Daniel Schneditz
Laura M. Rosales
Ahmad Taher Azar
6.1 Introduction
306(1)
6.2 Peripheral Access
307(3)
6.3 Flow Measurement
310(4)
6.4 Extracorporeal Application
314(4)
6.5 Access Flow
318(3)
6.6 Bolus Approach
321(2)
6.7 Continuous Infusion Approach
323(6)
6.8 Line Switches
329(1)
6.9 Arterio-Venous Gradients
330(4)
6.10 Conclusion
334(13)
References
335(12)
7 Hemodialysis Water Treatment System
347(32)
Ahmad Taher Azar
Suhail Ahmad
7.1 Water Contaminants
348(2)
7.2 Methods of Hemodialysis Water Purification
350(18)
7.3 Disinfection of Water Treatment Systems
368(1)
7.4 Monitoring and Testing of Dialysis Water Treatment System
369(3)
7.5 Conclusion
372(7)
References
372(7)
8 Dialyzer Performance Parameters
379(48)
Ahmad Taher Azar
8.1 Performance Characteristics of Dialyzers
380(21)
8.2 Factors Affecting Solute Clearance on Hemodialysis
401(12)
8.3 High Efficiency Dialysis
413(4)
8.4 Conclusion
417(10)
References
418(9)
9 Dialyzer Structure and Membrane Biocompatibility
427(54)
Orfeas Liangos
Bertrand L. Jaber
9.1 Introduction
428(1)
9.2 Overview of Dialyzer Structure
429(1)
9.3 Materials Used for Artificial Kidney Membranes
430(4)
9.4 Key Features of Biocompatibility
434(16)
9.5 Clinical Implications of Dialysis Membrane Biocompatibility
450(5)
9.6 Conclusion
455(26)
References
456(25)
10 Dialyzer Reprocessing
481(38)
Wayne Carlson
10.1 History of Dialyzer Reprocessing
482(4)
10.2 Guidance and Regulation of Dialyzer Reprocessing
486(1)
10.3 The Process of Dialyzer Reprocessing
486(9)
10.4 Manual and Automated Reprocessing
495(3)
10.5 Advantages and Disadvantages of Dialyzer Reprocessing
498(7)
10.6 Water Quality
505(2)
10.7 Anti-N Antibodies
507(1)
10.8 Reuse Associated Changes in Ultrafiltration Coefficient
508(1)
10.9 Current Controversies
509(1)
10.10 Conclusion and Future Developments
510(9)
References
510(9)
11 Flow Modeling of Hollow Fiber Dialyzers
519(44)
Manuel Prado-Velasco
11.1 General Issues of Dialyzer Flows
520(9)
11.2 Flow Modeling in a Whole Scenario
529(8)
11.3 ID Diffusive Model of a Hollow Fiber Dialyzer
537(8)
11.4 Succinct Review of Lacks of 1D Diffusive Flow Modeling of Hollow Fiber Dialyers
545(1)
11.5 A Deeper Insight in the Flow Modeling of Dialyzers
546(6)
11.6 Flow Modeling of Dialyzers: Progress and Future
552(1)
11.7 Conclusion
553(10)
References
554(9)
12 Single Pool Urea Kinetic Modeling
563(64)
Alicja E. Grzegorzewska
Ahmad Taher Azar
Laura M. Roa
J. Sergio Oliva
Jose A. Milan
Alfonso Palma
12.1 Compartment Effects in Hemodialysis
564(1)
12.2 Historical Review of Urea Kinetic Modeling
565(6)
12.3 Single Pool Urea Kinetic Model (SPUKM)
571(13)
12.4 Mathematical Models for Hemodialysis Dose Calculation
584(8)
12.5 Optimum Single Pool Hemodialysis Dose
592(3)
12.6 Residual Renal Function and Dialysis Dose
595(5)
12.7 Normalized Protein Catabolic Rate (Protein Nitrogen Appearance) and Dialysis Dose
600(8)
12.8 Dynamic Approach to Kt/V: The Time Constant in Hemodialysis
608(2)
12.9 Final Remarks and Conclusions
610(17)
References
613(14)
13 Double Pool Urea Kinetic Modeling
627(62)
Ahmad Taher Azar
Masatomo Yashiro
Daniel Schneditz
Laura M. Roa
13.1 Single Pool Model versus Double Pool Model
628(2)
13.2 Double Pool Urea Kinetic Model
630(10)
13.3 Estimation of Equilibrated Post-dialysis Blood Urea Concentration
640(3)
13.4 Estimation of Post-dialysis Urea Rebound
643(2)
13.5 Estimation of Equilibrated Dialysis Dose eq(Kt/V)
645(10)
13.6 Regional Blood Flow Model
655(13)
13.7 Conclusion
668(21)
References
676(13)
14 Applications of Bioimpedance to End Stage Renal Disease (ESRD)
689(82)
Laura M. Roa
David Naranjo
Javier Reina-Tosina
Alfonso Lara
Jose A. Milan
Miguel A. Estudillo
J. Sergio Oliva
14.1 Introduction
690(5)
14.2 History of Bioimpedance
695(3)
14.3 Physical Principles of Bioimpedance
698(11)
14.4 Bioimpedance Instrumentation Basics
709(5)
14.5 Bioimpedance Measurement Techniques
714(16)
14.6 Nephrology Applications
730(8)
14.7 Commercial Devices
738(4)
14.8 Case Studies
742(9)
14.9 Conclusion
751(20)
References
753(18)
Author Index 771