Atjaunināt sīkdatņu piekrišanu

E-grāmata: Modelling Language

(Institut universitaire de France and Université de Franche-Comté)
  • Formāts: 206 pages
  • Sērija : Natural Language Processing 10
  • Izdošanas datums: 22-May-2013
  • Izdevniecība: John Benjamins Publishing Co
  • Valoda: eng
  • ISBN-13: 9789027272089
Citas grāmatas par šo tēmu:
  • Formāts - PDF+DRM
  • Cena: 90,42 €*
  • * ši ir gala cena, t.i., netiek piemērotas nekādas papildus atlaides
  • Ielikt grozā
  • Pievienot vēlmju sarakstam
  • Šī e-grāmata paredzēta tikai personīgai lietošanai. E-grāmatas nav iespējams atgriezt un nauda par iegādātajām e-grāmatām netiek atmaksāta.
  • Formāts: 206 pages
  • Sērija : Natural Language Processing 10
  • Izdošanas datums: 22-May-2013
  • Izdevniecība: John Benjamins Publishing Co
  • Valoda: eng
  • ISBN-13: 9789027272089
Citas grāmatas par šo tēmu:

DRM restrictions

  • Kopēšana (kopēt/ievietot):

    nav atļauts

  • Drukāšana:

    nav atļauts

  • Lietošana:

    Digitālo tiesību pārvaldība (Digital Rights Management (DRM))
    Izdevējs ir piegādājis šo grāmatu šifrētā veidā, kas nozīmē, ka jums ir jāinstalē bezmaksas programmatūra, lai to atbloķētu un lasītu. Lai lasītu šo e-grāmatu, jums ir jāizveido Adobe ID. Vairāk informācijas šeit. E-grāmatu var lasīt un lejupielādēt līdz 6 ierīcēm (vienam lietotājam ar vienu un to pašu Adobe ID).

    Nepieciešamā programmatūra
    Lai lasītu šo e-grāmatu mobilajā ierīcē (tālrunī vai planšetdatorā), jums būs jāinstalē šī bezmaksas lietotne: PocketBook Reader (iOS / Android)

    Lai lejupielādētu un lasītu šo e-grāmatu datorā vai Mac datorā, jums ir nepieciešamid Adobe Digital Editions (šī ir bezmaksas lietotne, kas īpaši izstrādāta e-grāmatām. Tā nav tas pats, kas Adobe Reader, kas, iespējams, jau ir jūsu datorā.)

    Jūs nevarat lasīt šo e-grāmatu, izmantojot Amazon Kindle.

In response to the need for reliable results from natural language processing, this book presents an original way of decomposing a language(s) in a microscopic manner by means of intra/inter-language norms and divergences, going progressively from languages as systems to the linguistic, mathematical and computational models, which being based on a constructive approach are inherently traceable. Languages are described with their elements aggregating or repelling each other to form viable interrelated micro-systems. The abstract model, which contrary to the current state of the art works in intension, is exploitable for all sorts of applications where only the elements which are useful are assembled in the micro-systems needed to solve the problem in hand. Numerous definitions, schemata and examples involving many languages make the book accessible to students as well as academics and industrial researchers looking for new theories and methodologies for representations and problem solving wherever language and quality meet.
Preface ix
Prologue xi
Introduction 1(4)
Part 1 System, language and its components
Chapter 1.1 The concept of system
5(4)
1.1.1 System
5(1)
1.1.2 Systemicity
5(4)
Chapter 1.2 Language as a system
9(8)
1.2.1 Grammatical system
10(1)
1.2.2 Language typology
11(2)
1.2.3 Lexicology, morphology and syntax
13(4)
Chapter 1.3 The system's micro-components
17(8)
1.3.1 The word
17(3)
1.3.2 Morphemes and syllables
20(1)
1.3.3 Parts of speech
21(4)
Chapter 1.4 Syntactic analysis
25(2)
Chapter 1.5 Semantics
27(2)
Chapter 1.6 Norm in language
29(6)
1.6.1 Synchrony and diachrony
29(2)
1.6.2 Good usage
31(4)
Part 2 Modelling the norms
Chapter 2.1 Model
35(2)
Chapter 2.2 Our model
37(78)
2.2.1 The linguistic model
37(1)
2.2.1.1 Macrocosmic representation
37(4)
2.2.1.2 Microscopic approach to morphology
41(2)
2.2.1.2.1 Nested elements
43(2)
2.2.1.2.1.1 Morpho-syntax
45(3)
2.2.1.2.1.2 Lexical morphology
48(1)
2.2.1.2.1.2.1 Derivation
48(1)
2.2.1.2.1.2.2 Composition
49(2)
2.2.1.3 Systemic linguistic modelling of other languages
51(1)
2.2.1.3.1 Malay
51(1)
2.2.1.3.2 Arabic
52(1)
2.2.1.4 Concept of micro-system
53(1)
2.2.1.4.1 Algorithmic micro-system
53(2)
2.2.1.4.2 Examples of micro-systems
55(1)
2.2.1.4.2.1 Algorithmic micro-system example 1 and its various representations. French words starting with `ap'
55(1)
2.2.1.4.2.1.1 The algorithm
56(2)
2.2.1.4.2.1.2 Representations
58(3)
2.2.1.4.2.2 Algorithmic micro-system example
2. English words ending with -ed, -ing, -er, -est, -en
61(2)
2.2.1.4.2.3 Algorithmic micro-system example
3. The agreement of the French past participle
63(2)
2.2.1.4.2.4 Algorithmic micro-system example
4. Declension of German adjectives
65(6)
2.2.1.5 Our model for syntax
71(1)
2.2.1.5.1 Syntax and morphology
72(4)
2.2.1.5.2 Lexical syntax
76(1)
2.2.1.6 The same formal representation over domains and languages
76(2)
2.2.1.6.1 Interlanguage norms
78(1)
2.2.1.6.2 Divergent structures
79(4)
2.2.1.7 Disambiguation
83(1)
2.2.1.7.1 Disambiguation in English
83(1)
2.2.1.7.2 How to represent a problem of ambiguity in composition: Thai
83(2)
2.2.1.7.3 Disambiguating Chinese and Thai
85(2)
2.2.2 The mathematical model
87(1)
2.2.2.1 Necessary notions
87(1)
2.2.2.1.1 Set
88(3)
2.2.2.1.2 Partition
91(2)
2.2.2.1.3 Logical operations
93(1)
2.2.2.1.4 Binary relations
93(3)
2.2.2.1.5 Modelling algorithmic operations
96(1)
2.2.2.2 Mathematical modelling of micro-systemic linguistics
96(1)
2.2.2.2.1 Establishing a systemic linguistic analysis
97(1)
2.2.2.2.2 Establishing the partitions
97(1)
2.2.2.2.2.1 The non-contextual analysis
98(4)
2.2.2.2.2.2 The in-context analysis
102(2)
2.2.2.2.3 Set analysis
104(1)
2.2.2.2.3.1 Proper subsetting
105(1)
2.2.2.2.3.2 Disjunction
105(1)
2.2.2.2.4 In-context analysis reviewed
106(1)
2.2.2.2.5 Formulation of the super-system
106(2)
2.2.2.3 Optimisation considerations
108(1)
2.2.2.4 Applying the abstract mathematical model
109(1)
2.2.2.4.1 Model-driven evaluation
110(5)
Part 3 Methodologies and applications
Chapter 3.1 Grammar checkers
115(6)
Chapter 3.2 Part of speech tagger
121(16)
3.2.1 Morphological rule dictionary
121(6)
3.2.2 Labelgram
127(1)
3.2.3 Applications to different languages
128(1)
3.2.3.1 German
128(2)
3.2.3.2 Spanish
130(1)
3.2.3.3 English
131(1)
3.2.3.4 French
131(2)
3.2.4 Benchmarking
133(1)
3.2.5 Neologisms and Jabberwocky
134(3)
Chapter 3.3 Sense mining
137(8)
3.3.1 Classificatim
137(2)
3.3.2 Semegram
139(2)
3.3.3 Testing and the classification rate
141(1)
3.3.4 Results over different languages
142(3)
Chapter 3.4 Controlled languages
145(4)
Chapter 3.5 Intralanguage ambiguity
149(2)
Chapter 3.6 MultiCoDiCT
151(4)
Chapter 3.7 Controlled language and machine translation
155(16)
3.7.1 Divergent structures
156(2)
3.7.2 Lexical divergences
158(1)
3.7.3 Translation architecture
159(6)
3.7.4 Including a new language pair: Russian to Chinese
165(1)
3.7.5 Tests
166(1)
3.7.6 Tracing
166(5)
Chapter 3.8 Oral
171(10)
3.8.1 Controlling the oral
171(1)
3.8.1.1 Quasi-homophones and recognition
172(1)
3.8.1.2 Generation and interpretation of language sounds
173(1)
3.8.1.3 Examples of 12 languages with problems at the level of phonemes compared with English
174(5)
3.8.1.4 Other problems for future work
179(2)
Conclusion 181(2)
Epilogue 183(2)
References 185(6)
Index 191