Atjaunināt sīkdatņu piekrišanu

E-grāmata: Modelling Survival Data in Medical Research

(NHS Blood and Transplant, UK)
  • Formāts - EPUB+DRM
  • Cena: 102,68 €*
  • * ši ir gala cena, t.i., netiek piemērotas nekādas papildus atlaides
  • Ielikt grozā
  • Pievienot vēlmju sarakstam
  • Šī e-grāmata paredzēta tikai personīgai lietošanai. E-grāmatas nav iespējams atgriezt un nauda par iegādātajām e-grāmatām netiek atmaksāta.

DRM restrictions

  • Kopēšana (kopēt/ievietot):

    nav atļauts

  • Drukāšana:

    nav atļauts

  • Lietošana:

    Digitālo tiesību pārvaldība (Digital Rights Management (DRM))
    Izdevējs ir piegādājis šo grāmatu šifrētā veidā, kas nozīmē, ka jums ir jāinstalē bezmaksas programmatūra, lai to atbloķētu un lasītu. Lai lasītu šo e-grāmatu, jums ir jāizveido Adobe ID. Vairāk informācijas šeit. E-grāmatu var lasīt un lejupielādēt līdz 6 ierīcēm (vienam lietotājam ar vienu un to pašu Adobe ID).

    Nepieciešamā programmatūra
    Lai lasītu šo e-grāmatu mobilajā ierīcē (tālrunī vai planšetdatorā), jums būs jāinstalē šī bezmaksas lietotne: PocketBook Reader (iOS / Android)

    Lai lejupielādētu un lasītu šo e-grāmatu datorā vai Mac datorā, jums ir nepieciešamid Adobe Digital Editions (šī ir bezmaksas lietotne, kas īpaši izstrādāta e-grāmatām. Tā nav tas pats, kas Adobe Reader, kas, iespējams, jau ir jūsu datorā.)

    Jūs nevarat lasīt šo e-grāmatu, izmantojot Amazon Kindle.

Modelling Survival Data in Medical Research, Fourth Edition, describes the analysis of survival data, illustrated using a wide range of examples from biomedical research. Written in a non-technical style, it concentrates on how the techniques are used in practice. Starting with standard methods for summarising survival data, Cox regression and parametric modelling, the book covers many more advanced techniques, including interval-censoring, frailty modelling, competing risks, analysis of multiple events, and dependent censoring.

This new edition contains chapters on Bayesian survival analysis and use of the R software. Earlier chapters have been extensively revised and expanded to add new material on several topics. These include methods for assessing the predictive ability of a model, joint models for longitudinal and survival data, and modern methods for the analysis of interval-censored survival data.

Features:





Presents an accessible account of a wide range of statistical methods for analysing survival data Contains practical guidance on modelling survival data from the authors many years of experience in teaching and consultancy Shows how Bayesian methods can be used to analyse survival data Includes details on how R can be used to carry out all the methods described, with guidance on the interpretation of the resulting output Contains many real data examples and additional data sets that can be used for coursework All data sets used are available in electronic format from the publishers website

Modelling Survival Data in Medical Research, Fourth Edition, is an invaluable resource for statisticians in the pharmaceutical industry and biomedical research centres, research scientists and clinicians who are analysing their own data, and students following undergraduate or postgraduate courses in survival analysis.

1. Survival analysis
2. Some non-parametric procedures
3. The Cox regression model
4. Model checking in the Cox regression model
5. Parametric regression models
6. Flexible parametric models
7. Model checking in parametric models
8. Time-dependent variables
9. Interval-censored survival data
10. Frailty models
11. Non-proportional hazards and institutional comparisons 12 Competing risks
13. Multiple events and event history modelling
14. Dependent censoring
15. Sample size requirements for a survival study
16. Bayesian survival analysis
17. Survival Analysis with R

David Collett obtained his first degree at the University of Leicester, before going on to complete an MSc in statistics at the University of Newcastle and a PhD in statistics at the University of Hull. David was a lecturer and senior lecturer in the Department of Applied Statistics at the University of Reading for over 25 years, including eight years as head of that department. In 2003, he was appointed Associate Director of Statistics and Clinical Studies at NHS Blood and Transplant. This involved supervising the statistical work of over 30 staff and collaborative work with transplant clinicians and research scientists. David became Director of the NHS Blood and Transplant Clinical Trials Unit, responsible for the design, conduct and analysis of clinical trials in transplantation and transfusion medicine. He also held a visiting chair in the Southampton Statistical Sciences Research Institute, University of Southampton, until his retirement. He now likes to spend as much time as possible on the golf course.