Atjaunināt sīkdatņu piekrišanu

Models@run.time: Foundations, Applications, and Roadmaps 2014 ed. [Mīkstie vāki]

Edited by , Edited by , Edited by , Edited by
  • Formāts: Paperback / softback, 319 pages, height x width: 235x155 mm, weight: 5037 g, 89 Illustrations, black and white; X, 319 p. 89 illus., 1 Paperback / softback
  • Sērija : Programming and Software Engineering 8378
  • Izdošanas datums: 18-Jul-2014
  • Izdevniecība: Springer International Publishing AG
  • ISBN-10: 3319089145
  • ISBN-13: 9783319089140
  • Mīkstie vāki
  • Cena: 46,91 €*
  • * ši ir gala cena, t.i., netiek piemērotas nekādas papildus atlaides
  • Standarta cena: 55,19 €
  • Ietaupiet 15%
  • Grāmatu piegādes laiks ir 3-4 nedēļas, ja grāmata ir uz vietas izdevniecības noliktavā. Ja izdevējam nepieciešams publicēt jaunu tirāžu, grāmatas piegāde var aizkavēties.
  • Daudzums:
  • Ielikt grozā
  • Piegādes laiks - 4-6 nedēļas
  • Pievienot vēlmju sarakstam
  • Formāts: Paperback / softback, 319 pages, height x width: 235x155 mm, weight: 5037 g, 89 Illustrations, black and white; X, 319 p. 89 illus., 1 Paperback / softback
  • Sērija : Programming and Software Engineering 8378
  • Izdošanas datums: 18-Jul-2014
  • Izdevniecība: Springer International Publishing AG
  • ISBN-10: 3319089145
  • ISBN-13: 9783319089140
Traditionally, research on model-driven engineering (MDE) has mainly focused on the use of models at the design, implementation, and verification stages of development. This work has produced relatively mature techniques and tools that are currently being used in industry and academia. However, software models also have the potential to be used at runtime, to monitor and verify particular aspects of runtime behavior, and to implement self-* capabilities (e.g., adaptation technologies used in self-healing, self-managing, self-optimizing systems). A key benefit of using models at runtime is that they can provide a richer semantic base for runtime decision-making related to runtime system concerns associated with autonomic and adaptive systems.

This book is one of the outcomes of the Dagstuhl Seminar 11481 on models@run.time held in November/December 2011, discussing foundations, techniques, mechanisms, state of the art, research challenges, and applications for the use of runtime models. The book comprises four research roadmaps, written by the original participants of the Dagstuhl Seminar over the course of two years following the seminar, and seven research papers from experts in the area. The roadmap papers provide insights to key features of the use of runtime models and identify the following research challenges: the need for a reference architecture, uncertainty tackled by runtime models, mechanisms for leveraging runtime models for self-adaptive software, and the use of models at runtime to address assurance for self-adaptive systems.
Roadmap
Chapters
A Reference Architecture and Roadmap for Models@run.time Systems
1(18)
Uwe Asmann
Sebastian Gotz
Jean-Marc Jezequel
Brice Morin
Mario Trapp
Mechanisms for Leveraging Models at Runtime in Self-adaptive Software
19(28)
Amel Bennaceur
Robert France
Giordano Tamburrelli
Thomas Vogel
Pieter J. Mosterman
Walter Cazzola
Fabio M. Costa
Alfonso Pierantonio
Matthias Tichy
Mehmet Aksit
Par Emmanuelson
Huang Gang
Nikolaos Georgantas
David Redlich
Living with Uncertainty in the Age of Runtime Models
47(54)
Holger Giese
Nelly Bencomo
Liliana Pasquale
Andres J. Ramirez
Paola Inverardi
Sebastian Watzoldt
Siobhan Clarke
Using Models at Runtime to Address Assurance for Self-Adaptive Systems
101(36)
Betty H.C. Cheng
Kerstin I. Eder
Martin Gogolla
Lars Grunske
Marin Litoiu
Hausi A. Muller
Patrizio Pelliccione
Anna Perini
Nauman A. Qureshi
Bernhard Rumpe
Daniel Schneider
Frank Trollmann
Norha M. Villegas
Normal
Chapters
Model-driven, Moving-Target Defense for Enterprise Network Security
137(25)
Scott A. DeLoach
Xinming Ou
Rui Zhuang
Su Zhang
ModelLAND: Where Do Models Come from?
162(26)
Marco Autili
Davide Di Ruscio
Paola Inverardi
Patrizio Pelliccione
Massimo Tivoli
From Model-Driven Software Development Processes to Problem Diagnoses at Runtime
188(20)
Yijun Yu
Thein Than Tun
Arosha K. Bandara
Tian Zhang
Bashar Nuseibeh
Research Challenges for Business Process Models at Run-Time
208(29)
David Redlich
Gordon Blair
Awais Rashid
Thomas Molka
Wasif Gilani
Fine-Grained Semi-automated Runtime Evolution
237(22)
Walter Cazzola
Nicole Alicia Rossini
Phillipa Bennett
Sai Pradeep Mandalaparty
Robert France
Evolution as «Reflections on the Design»
259(20)
Walter Cazzola
Safety Assurance of Open Adaptive Systems -- A Survey
279(40)
Mario Trapp
Daniel Schneider
Author Index 319