Introduction and Historical Notes |
|
ix | |
|
9 Unbounded Operators on Hilbert Spaces |
|
|
1 | (64) |
|
9.1 Unbounded Symmetric Operators on Hilbert Spaces |
|
|
2 | (5) |
|
9.2 Friedrichs's Self-Adjoint Extensions of Semibounded Operators |
|
|
7 | (3) |
|
9.3 Example: Incommensurable Self-adjoint Extensions |
|
|
10 | (2) |
|
9.4 Unbounded Self-adjoint Operators with Compact Resolvents |
|
|
12 | (2) |
|
9.5 Example: Δ on L2(T) and Sobolev Spaces |
|
|
14 | (10) |
|
9.6 Example: Exotic Eigenfunctions on T |
|
|
24 | (2) |
|
9.7 Example: Usual Sobolev Spaces on R |
|
|
26 | (2) |
|
9.8 Example: Discrete Spectrum of -Δ + x2 on L2(R) |
|
|
28 | (7) |
|
9.9 Essential Self-adjointness |
|
|
35 | (3) |
|
9.10 Example: Essentially Self-adjoint Operator |
|
|
38 | (2) |
|
9.A Appendix: Compact Operators |
|
|
40 | (8) |
|
9.B Appendix: Open Mapping and Closed Graph Theorems |
|
|
48 | (2) |
|
9.C Appendix: Irreducibles of Compact Groups |
|
|
50 | (4) |
|
9.D Appendix: Spectral Theorem, Schur's Lemma, Multiplicities |
|
|
54 | (8) |
|
9.E Appendix: Tietze-Urysohn-Brouwer Extension Theorem |
|
|
62 | (3) |
|
10 Discrete Decomposition of Pseudo-Cuspforms |
|
|
65 | (26) |
|
10.1 Compact Resolvents in Simplest Examples |
|
|
66 | (1) |
|
10.2 Compact Resolvents for SL3(Z), SL4(Z), SL5(Z),... |
|
|
67 | (2) |
|
10.3 Density of Domains of Operators |
|
|
69 | (2) |
|
10.4 Tail Estimates: Simplest Example |
|
|
71 | (3) |
|
10.5 Tail Estimates: Three Additional Small Examples |
|
|
74 | (3) |
|
10.6 Tail Estimate: SL3(Z), SL4(Z), SL5(Z) |
|
|
77 | (5) |
|
10.7 Compact B1a → L2a in Four Simple Examples |
|
|
82 | (6) |
|
10.8 Compact B1a → L2a for SL3(Z), SL4(Z), SL5(Z),... |
|
|
88 | (2) |
|
10.9 Compact Resolvents and Discrete Spectrum |
|
|
90 | (1) |
|
11 Meromorphic Continuation of Eisenstein Series |
|
|
91 | (51) |
|
11.1 Up to the Critical Line: Four Simple Examples |
|
|
92 | (2) |
|
11.2 Recharacterization of Friedrichs Extensions |
|
|
94 | (3) |
|
11.3 Distributional Characterization of Pseudo-Laplacians |
|
|
97 | (4) |
|
11.4 Key Density Lemma: Simple Cases |
|
|
101 | (3) |
|
11.5 Beyond the Critical Line: Four Simple Examples |
|
|
104 | (8) |
|
11.6 Exotic Eigenfunctions: Four Simple Examples |
|
|
112 | (2) |
|
11.7 Up to the Critical Line: SLr(Z) |
|
|
114 | (4) |
|
11.8 Distributional Characterization of Pseudo-Laplacians |
|
|
118 | (4) |
|
11.9 Density Lemma for Pr,r ⊂ SL2r |
|
|
122 | (4) |
|
11.10 Beyond the Critical Line: Pr,r ⊂ SL2r |
|
|
126 | (9) |
|
11.11 Exotic Eigenfunctions: Pr,r ⊂ SL2r |
|
|
135 | (2) |
|
11.12 Non-Self-Associate Cases |
|
|
137 | (3) |
|
11.A Appendix: Distributions Supported on Submanifolds |
|
|
140 | (2) |
|
12 Global Automorphic Sobolev Spaces, Green's Functions |
|
|
142 | (45) |
|
12.1 A Simple Pretrace Formula |
|
|
143 | (7) |
|
12.2 Pretrace Formula for Compact Periods |
|
|
150 | (3) |
|
12.3 Global Automorphic Sobolev Spaces Hl |
|
|
153 | (8) |
|
12.4 Spectral Characterization of Sobolev Spaces Hs |
|
|
161 | (5) |
|
12.5 Continuation of Solutions of Differential Equations |
|
|
166 | (5) |
|
12.6 Example: Automorphic Green's Functions |
|
|
171 | (2) |
|
12.7 Whittaker Models and a Subquotient Theorem |
|
|
173 | (5) |
|
12.8 Meromorphic Continuation of Intertwining Operators |
|
|
178 | (2) |
|
12.9 Intertwining Operators among Principal Series |
|
|
180 | (5) |
|
12.A Appendix: A Usual Trick with Γ(s) |
|
|
185 | (2) |
|
13 Examples: Topologies on Natural Function Spaces |
|
|
187 | (61) |
|
13.1 Banach Spaces Ck[ a, b] |
|
|
188 | (2) |
|
13.2 Non-Banach Limit C∞[ a, b] of Banach Spaces Ck[ a, b] |
|
|
190 | (6) |
|
13.3 Sufficient Notion of Topological Vectorspace |
|
|
196 | (4) |
|
13.4 Unique Vectorspace Topology on Cn |
|
|
200 | (2) |
|
13.5 Non-Banach Limits Ck(R), C∞(R) of Banach Spaces Ck[ a, b] |
|
|
202 | (3) |
|
13.6 Banach Completion Ck0(R) of Ckc(R) |
|
|
205 | (1) |
|
13.7 Rapid-Decay Functions, Schwartz Functions |
|
|
206 | (5) |
|
13.8 Non-Frechet Colimit C∞ of Cn, Quasi-Completeness |
|
|
211 | (4) |
|
13.9 Non-Frechet Colimit C∞c(R) of Frechet Spaces |
|
|
215 | (2) |
|
13.10 LF-Spaces of Moderate-Growth Functions |
|
|
217 | (1) |
|
13.11 Seminorms and Locally Convex Topologies |
|
|
218 | (6) |
|
13.12 Quasi-Completeness Theorem |
|
|
224 | (5) |
|
13.13 Strong Operator Topology |
|
|
229 | (1) |
|
13.14 Generalized Functions (Distributions) on R |
|
|
229 | (6) |
|
13.15 Tempered Distributions and Fourier Transforms on R |
|
|
235 | (3) |
|
13.16 Test Functions and Paley-Wiener Spaces |
|
|
238 | (3) |
|
13.17 Schwartz Functions and Fourier Transforms on Qp |
|
|
241 | (7) |
|
14 Vector-Valued Integrals |
|
|
248 | (23) |
|
14.1 Characterization and Basic Results |
|
|
249 | (3) |
|
14.2 Differentiation of Parametrized Integrals |
|
|
252 | (1) |
|
|
253 | (2) |
|
14.4 Uniqueness of Invariant Distributions |
|
|
255 | (2) |
|
14.5 Smoothing of Distributions |
|
|
257 | (4) |
|
14.6 Density of Smooth Vectors |
|
|
261 | (1) |
|
14.7 Quasi-Completeness and Convex Hulls of Compacts |
|
|
262 | (2) |
|
|
264 | (1) |
|
14.A Appendix: Hahn-Banach Theorems |
|
|
265 | (6) |
|
15 Differentiable Vector-Valued Functions |
|
|
271 | (22) |
|
15.1 Weak-to-Strong Differentiability |
|
|
271 | (1) |
|
15.2 Holomorphic Vector-Valued Functions |
|
|
272 | (3) |
|
15.3 Holomorphic Hol(Omega;, V)-Valued Functions |
|
|
275 | (2) |
|
15.4 Banach-Alaoglu: Compactness of Polars |
|
|
277 | (1) |
|
15.5 Variant Banach-Steinhaus/Uniform Boundedness |
|
|
278 | (1) |
|
15.6 Weak Boundedness Implies (strong) Boundedness |
|
|
279 | (1) |
|
15.7 Proof That Weak C1 Implies Strong C0 |
|
|
280 | (1) |
|
15.8 Proof That Weak Holomorphy Implies Continuity |
|
|
281 | (1) |
|
15.A Appendix: Vector-Valued Power Series |
|
|
282 | (2) |
|
15.B Appendix: Two Forms of the Baire Category Theorem |
|
|
284 | (1) |
|
15.C Appendix: Hartogs's Theorem on Joint Analyticity |
|
|
285 | (8) |
|
|
293 | (40) |
|
16.1 Heuristic for Stirling's Asymptotic |
|
|
294 | (1) |
|
|
295 | (1) |
|
16.3 Watson's Lemma Illustrated on the Beta Function |
|
|
296 | (1) |
|
16.4 Simple Form of Laplace's Method |
|
|
297 | (3) |
|
16.5 Laplace's Method Illustrated on Bessel Functions |
|
|
300 | (3) |
|
16.6 Regular Singular Points Heuristic: Freezing Coefficients |
|
|
303 | (2) |
|
16.7 Regular Singular Points |
|
|
305 | (2) |
|
16.8 Regular Singular Points at Infinity |
|
|
307 | (1) |
|
|
308 | (1) |
|
16.10 Irregular Singular Points |
|
|
309 | (5) |
|
16.11 Example: Translation-Equivariant Eigenfunctions on |
|
|
314 | (2) |
|
16.12 Beginning of Construction of Solutions |
|
|
316 | (2) |
|
16.13 Boundedness of K(x, t) |
|
|
318 | (2) |
|
16.14 End of Construction of Solutions |
|
|
320 | (2) |
|
16.15 Asymptotics of Solutions |
|
|
322 | (5) |
|
16.A Appendix: Manipulation of Asymptotic Expansions |
|
|
327 | (2) |
|
16.B Appendix: Ordinary Points |
|
|
329 | (4) |
Bibliography |
|
333 | (8) |
Index |
|
341 | |