Atjaunināt sīkdatņu piekrišanu

E-grāmata: Modern Analytic Mechanics

  • Formāts: PDF+DRM
  • Izdošanas datums: 17-Apr-2013
  • Izdevniecība: Kluwer Academic/Plenum Publishers
  • Valoda: eng
  • ISBN-13: 9781475758672
Citas grāmatas par šo tēmu:
  • Formāts - PDF+DRM
  • Cena: 106,47 €*
  • * ši ir gala cena, t.i., netiek piemērotas nekādas papildus atlaides
  • Ielikt grozā
  • Pievienot vēlmju sarakstam
  • Šī e-grāmata paredzēta tikai personīgai lietošanai. E-grāmatas nav iespējams atgriezt un nauda par iegādātajām e-grāmatām netiek atmaksāta.
  • Formāts: PDF+DRM
  • Izdošanas datums: 17-Apr-2013
  • Izdevniecība: Kluwer Academic/Plenum Publishers
  • Valoda: eng
  • ISBN-13: 9781475758672
Citas grāmatas par šo tēmu:

DRM restrictions

  • Kopēšana (kopēt/ievietot):

    nav atļauts

  • Drukāšana:

    nav atļauts

  • Lietošana:

    Digitālo tiesību pārvaldība (Digital Rights Management (DRM))
    Izdevējs ir piegādājis šo grāmatu šifrētā veidā, kas nozīmē, ka jums ir jāinstalē bezmaksas programmatūra, lai to atbloķētu un lasītu. Lai lasītu šo e-grāmatu, jums ir jāizveido Adobe ID. Vairāk informācijas šeit. E-grāmatu var lasīt un lejupielādēt līdz 6 ierīcēm (vienam lietotājam ar vienu un to pašu Adobe ID).

    Nepieciešamā programmatūra
    Lai lasītu šo e-grāmatu mobilajā ierīcē (tālrunī vai planšetdatorā), jums būs jāinstalē šī bezmaksas lietotne: PocketBook Reader (iOS / Android)

    Lai lejupielādētu un lasītu šo e-grāmatu datorā vai Mac datorā, jums ir nepieciešamid Adobe Digital Editions (šī ir bezmaksas lietotne, kas īpaši izstrādāta e-grāmatām. Tā nav tas pats, kas Adobe Reader, kas, iespējams, jau ir jūsu datorā.)

    Jūs nevarat lasīt šo e-grāmatu, izmantojot Amazon Kindle.

By modern analytic mechanics we mean the classical mechanics of today, that is, the mechanics that has proven particularly useful in understanding the universe as we experience it from the solar system, to particle accelerators, to rocket motion. The mathematical and numerical techniques that are part of this mechanics that we present are those that we have found to be particularly productive in our work in the subject. The balance of topics in this book is somewhat different from previous texts. We emphasize the use of phase space to describe the dynamics of a system and to have a qualitative understanding of nonlinear systems. We incorporate exercises that are to be done using a computer to solve linear and nonlinear problems and to have a graphical representation of the results. While analytic solutions of physics problems are to be prefer. red, it is not always possible to find them for all problems. When that happens, techniques other than analysis must be brought to bear on the problem. In many cases numerical treatments are useful in generating solutions, and with these solutions often come new insights. These insights can sometimes be used for making further analytic progress, and often the process is iterative. Thus the ability to use a computer to solve problems is one of the tools of the modern physicist. Just as analytic problem-solving enhances the student's understanding of physics, so will using the computer enhance his or her appreciation of the subject.
Newtonian Mechanics
1(32)
Introduction
1(1)
Newton's Laws of Motion
1(2)
Inertial Reference Frames
3(3)
Many-Particle Systems
6(6)
Energy and Energy Conservation
12(5)
Angular Momentum
17(3)
The Harmonic Oscillator
20(8)
Motion in Noninertial Frames
28(5)
Hamilton's Principle
33(16)
Introduction
33(1)
Extrema as Measures of Motion
33(3)
Generalized Coordinates
36(6)
Conservation Theorems
42(3)
The Pendulum Revisited, or Lagrange Multipliers
45(4)
Gravitational Law and Planetary Motion
49(24)
Gravitational Field
49(5)
Central Force Motion: Conservation Theorems
54(7)
Elliptical Trajectories and Kepler's Laws
61(2)
Orbit Precession
63(1)
Stability of a Circular Orbit
64(2)
Rutherford Scattering: Hyperbolic Orbits and Elastic Scattering
66(7)
Hamiltonian Description
73(22)
Introduction
73(1)
Hamilton Equations of Motion
73(3)
Hamilton Function and Conservation Theorems
76(4)
Numerical Integration of the Hamilton Equations
80(3)
Phase-Space Trajectories
83(5)
Liouville Theorem
88(3)
Canonical Transformations
91(1)
Virial Theorem
92(3)
Oscillations I
95(26)
Introduction
95(10)
Systems with Many Degrees of Freedom
105(7)
Normal Mode Analysis
112(2)
Diagonalization of the Mass Matrix
114(5)
Driven Oscillators
119(2)
Oscillations II
121(26)
The Loaded String
121(11)
Focusing of Charged Particles
132(6)
Nonlinear Oscillations
138(2)
The Bouncing Ball
140(7)
Rigid Bodies
147(28)
Degrees of Freedom of a Rigid Body
147(1)
Equations of Motion of a Rigid Body
148(4)
Velocity and Angular Velocity
152(3)
Momentum and Angular Momentum of a Rigid Body
155(1)
The Inertia Tensor
155(1)
Kinetic Energy and the Inertia Tensor
156(2)
Diagonalization of the Inertia Tensor
158(1)
Transformation of the Inertia Tensor
159(2)
Euler's Equations of Motion
161(2)
Free Motion of a Rigid Body
163(2)
Euler's Angles
165(1)
Motion of a Heavy Symmetrical Top with One Point Fixed
166(6)
Stability of Rigid Body Rotation
172(3)
Waves in Mechanical Systems
175(34)
Waves in One Dimension
175(2)
Reflected and Transmitted Waves
177(4)
Energy in Traveling Waves
181(1)
Standing Waves
182(3)
Dispersion, Phase Velocity, and Group Velocity
185(2)
Numerical Solution of the Wave Equation
187(4)
Waves in Two Dimensions
191(12)
Stress Waves in Solids
203(6)
Special Relativity
209(34)
Introduction
209(2)
The Lorentz Transformation
211(4)
Transformation of Velocity and Acceleration
215(2)
Simultaneity, Time Dilation, and Lorentz--Fitzgerald Contraction
217(5)
Four-Vector Formalism
222(5)
Energy--Momentum Four-Vector
227(1)
Doppler Effect
228(2)
Particle Dynamics
230(3)
The Lorentz Force
233(2)
Solutions of the Equations of Motion
235(8)
Problems
243(26)
Newtonian Mechanics (Chapter 1)
243(5)
Hamilton's Principle (Chapter 2)
248(3)
Gravitational Law and Planetary Motion (Chapter 3)
251(3)
Hamiltonian Description (Chapter 4)
254(2)
Oscillations (Chapters 5 and 6)
256(4)
Rigid Bodies (Chapter 7)
260(2)
Waves in Mechanical Systems (Chapter 8)
262(1)
Special Relativity (Chapter 9)
263(6)
Appendix A Linear Algebra 269(8)
A.1. Properties of Determinants
270(1)
A.2. Matrix Notation
270(3)
A.3. Matrix Operations
273(1)
A.4. Types of Matrices
274(1)
Eigenvalue Analysis
274(3)
Appendix B Linear Differential Equations 277(6)
Appendix C Numerical Methods 283(16)
C.1. Numerical Evaluation of Integrals
283(3)
C.2. Numerical Integration of Ordinary Differential Equations
286(13)
Appendix D Fourier Series 299(8)
D.1. Series Representation of Periodic Functions
299(2)
D.2. Evaluation of Series
301(1)
D.3. Numerical Evaluation of Series Coefficients
302(3)
D.4. Complex Series
305(2)
Appendix E Computer Exercises in Classical Mechanics 307(16)
E.1. Using the Computer
307(1)
E.2. Starting Out
308(15)
Appendix F FORTRAN 323(10)
F.1. Basic Elements of a FORTRAN Program
323(3)
F.2. Other Data Types
326(1)
F.3. FORTRAN Functions
326(3)
F.4. Looping
329(1)
F.5. Variables with Many Values
330(2)
F.6. Subroutines
332(1)
Appendix G Mathcad 333(4)
Bibliography 337(2)
Index 339