Atjaunināt sīkdatņu piekrišanu

E-grāmata: Modern Land Drainage: Planning, Design and Management of Agricultural Drainage Systems

(Consulting Engineer, Winchester, UK), (Consultant, Arnhem, the Netherlands), (Consultant, SKM, Tatura, Australia)
  • Formāts: 502 pages
  • Izdošanas datums: 07-May-2020
  • Izdevniecība: CRC Press
  • Valoda: eng
  • ISBN-13: 9781000042207
  • Formāts - PDF+DRM
  • Cena: 70,12 €*
  • * ši ir gala cena, t.i., netiek piemērotas nekādas papildus atlaides
  • Ielikt grozā
  • Pievienot vēlmju sarakstam
  • Šī e-grāmata paredzēta tikai personīgai lietošanai. E-grāmatas nav iespējams atgriezt un nauda par iegādātajām e-grāmatām netiek atmaksāta.
  • Formāts: 502 pages
  • Izdošanas datums: 07-May-2020
  • Izdevniecība: CRC Press
  • Valoda: eng
  • ISBN-13: 9781000042207

DRM restrictions

  • Kopēšana (kopēt/ievietot):

    nav atļauts

  • Drukāšana:

    nav atļauts

  • Lietošana:

    Digitālo tiesību pārvaldība (Digital Rights Management (DRM))
    Izdevējs ir piegādājis šo grāmatu šifrētā veidā, kas nozīmē, ka jums ir jāinstalē bezmaksas programmatūra, lai to atbloķētu un lasītu. Lai lasītu šo e-grāmatu, jums ir jāizveido Adobe ID. Vairāk informācijas šeit. E-grāmatu var lasīt un lejupielādēt līdz 6 ierīcēm (vienam lietotājam ar vienu un to pašu Adobe ID).

    Nepieciešamā programmatūra
    Lai lasītu šo e-grāmatu mobilajā ierīcē (tālrunī vai planšetdatorā), jums būs jāinstalē šī bezmaksas lietotne: PocketBook Reader (iOS / Android)

    Lai lejupielādētu un lasītu šo e-grāmatu datorā vai Mac datorā, jums ir nepieciešamid Adobe Digital Editions (šī ir bezmaksas lietotne, kas īpaši izstrādāta e-grāmatām. Tā nav tas pats, kas Adobe Reader, kas, iespējams, jau ir jūsu datorā.)

    Jūs nevarat lasīt šo e-grāmatu, izmantojot Amazon Kindle.

Modern Land Drainage 2nd edition is a fully revised and updated edition of the 2004 edition. Modern Land Drainage describes traditional drainage formulas (Hooghoudt, Kirkham, Donnan, Ernst, Glover-Dumm) for rainfed agriculture in the humid temperature zone. Significant parts are devoted to drainage for salinity control of irrigated land in (semi-) arid zones, and to drainage of rice land in the humid tropics. Institutional, management and maintenance aspects are extensively covered, as well as the mitigation of adverse impacts of drainage interventions on the environment. The latest computer applications for drainage design in the context of integrated water management are described (DRAINMOD, HEC, SWAP, etc.). Field surveys are executed by governments, with the aid of consultants, but rarely are the end stakeholders (i.e., farmers and general public) involved from inception to planning to execution of a drainage system. Yet, during the Operation, Management and Maintenance (OMM) phase of a water management system, they are expected to takeover, run, bear and be responsible for the costs of OMM. The book describes successful methodologies and processes to be followed for engagement of stakeholders at all levels, from government to farm, from minister to farmer, and, from beginning to end. The book covers all aspects needed for sustainable drainage. The latest survey methodologies with satellites and drones are suggested to assess cause and effect. Waterlogging and salinity are the effect of something caused most likely upstream of the drainage problem location. Hence treating the cause may be more cost-effective. Triple Bottom Line (social, environmental and financial considerations) and the water-food-energy nexus are an integral part of the drainage design process. Controlled drainage, i.e. the balance of removal and conservation of drainage water and minimising solute transport as low as reasonably achievable (ALARA principle) is extensively described. This work is intended for use both as a university level textbook and as a professional handbook; it is of particular value to professionals engaged in drainage development in the context of integrated water resources and river basin management, civil and agricultural engineers, government officials, university students and libraries.
List of tables
xv
List of figures
xix
List of boxes
xxv
Preface xxvii
About the authors xxix
PART I Introduction
1(56)
1 Land drainage for agriculture
3(28)
1.1 Drainage objectives; Scope of the book
5(3)
1.2 Global drainage zones
8(1)
1.2.1 Temperate zone
8(1)
1.2.2 Arid and semi-arid zone
9(1)
1.2.3 Humid and semi-humid zone
9(1)
1.3 Agro-hydrological regimes
9(2)
1.4 Waterlogging control
11(6)
1.4.1 Positive and adverse impacts
11(2)
1.4.2 Responses to improved drainage
13(4)
1.5 Salinity control
17(1)
1.6 Drainage systems
17(2)
1.7 Bio-drainage
19(1)
1.8 Environmental impacts
20(8)
1.8.1 Stream flow regimes
21(1)
1.8.2 Water quality
21(3)
1.8.3 Wetlands and conservation drainage
24(4)
1.8.4 Public health
28(1)
1.9 Drainage development considerations
28(3)
2 Planning and design considerations
31(10)
2.1 Design rainfall
33(4)
2.2 Percolation of excess irrigation water
37(1)
2.3 Design of field drainage systems
38(1)
2.4 Determination of design criteria
39(2)
3 Remote sensing and field reconnaissance
41(8)
3.1 Need for drainage and problem diagnosis
41(1)
3.2 Remote sensing and aerial survey
42(2)
3.3 Field investigations
44(1)
3.4 Planning stakeholder engagement
44(1)
3.5 Stages of project preparation
45(1)
3.6 Operation, management and maintenance
46(3)
4 Assessment of costs
49(8)
4.1 Required information
49(2)
4.2 Discounting
51(1)
4.3 Evaluation indices
52(1)
4.4 Cost evaluation of open and pipe drainage systems incl. O&M
52(2)
4.5 Cost calculations for pipe drainage systems
54(3)
4.5.1 Cost structure for pipe drainage construction
54(1)
4.5.2 Guidelines for cost calculations
54(1)
4.5.3 Example cost calculation
55(2)
PART II Investigations
57(60)
5 Climate, land, soil and environment
59(24)
5.1 Climate
59(3)
5.1.1 Climate; soil moisture balance calculations
59(3)
5.1.2 Climate: rainfall depth-duration-frequency studies
62(1)
5.2 Topography
62(1)
5.3 Soil and land conditions
63(2)
5.4 Soil parameters and properties
65(6)
5.4.1 Texture
65(3)
5.4.2 Plasticity index
68(1)
5.4.3 Bulk density and soil moisture content
69(1)
5.4.4 Sample quantity and density
70(1)
5.4.5 Data requirement for drain envelope design
70(1)
5.5 Watertable and groundwater
71(3)
5.5.1 Watertable observation wells
71(1)
5.5.2 Piezometric studies
72(1)
5.5.3 Groundwater sampling
73(1)
5.6 Hydrology and geohydrology
74(1)
5.6.1 Runoff and flooding
74(1)
5.6.2 Outlet conditions
74(1)
5.6.3 Geohydrological conditions
74(1)
5.7 Agriculture and irrigation
75(1)
5.8 Pilot areas and field testing
75(4)
5.8.1 Types of pilot areas
76(1)
5.8.2 Analysis of results of pilot areas
77(1)
5.8.3 Visual drainage need assessment
77(1)
5.8.4 Statistical analysis
78(1)
5.9 Environmental impact
79(4)
5.9.1 Environmental impact assessment
80(1)
5.9.2 Miscellaneous investigations
80(3)
6 Water in the soil
83(14)
6.1 Forms and nature of occurrence of water in the soil
83(2)
6.2 Pressures in the soil water
85(1)
6.3 Soil moisture characteristics
86(2)
6.4 Soil water potential and soil water movement
88(2)
6.5 Unsaturated zone; soil moisture constants
90(2)
6.6 Infiltration and percolation
92(2)
6.7 Groundwater flow; Laplace Equation
94(3)
7 Hydraulic conductivity
97(20)
7.1 Laboratory measurement
98(2)
7.2 Field measurements below the watertable
100(8)
7.2.1 Augerhole method
100(5)
7.2.2 Piezometer method
105(1)
7.2.3 Drain outflow method
106(2)
7.3 Field measurements above the watertable
108(3)
7.3.1 Infiltrometer-method
108(2)
7.3.2 Inverted augerhole method (Porchet method)
110(1)
7.4 Composed K-values
111(2)
7.5 Surveys and data processing
113(4)
PART III Systems and technology
117(76)
8 Subsurface drainage systems
119(42)
8.1 Pipe drain systems
120(3)
8.2 Deep ditch systems
123(1)
8.3 Drainpipes
124(5)
8.4 Envelopes
129(7)
8.4.1 Envelope need
129(4)
8.4.2 Material selection
133(2)
8.4.3 Envelope thickness
135(1)
8.5 Envelope design guidelines and criteria
136(8)
8.5.1 Granular envelopes
136(4)
8.5.2 Organic envelopes
140(1)
8.5.3 Synthetic envelopes
140(4)
8.6 Structures in pipe drain systems
144(5)
8.6.1 Surface water inlets
144(1)
8.6.2 Inspection, junctions and control
144(2)
8.6.3 Crossings
146(1)
8.6.4 Outlet of a pipe drain into a ditch or canal
146(1)
8.6.5 Sump outlet
146(3)
8.7 Construction of pipe drain systems
149(12)
8.7.1 Setting out, depth and grade control
149(2)
8.7.2 Installation methods and machinery
151(5)
8.7.3 Construction and quality control
156(1)
8.7.4 Timing of installation
157(1)
8.7.5 Installation below the watertable
157(1)
8.7.6 Backfill
158(3)
9 Surface/shallow drainage systems
161(18)
9.1 Bedding systems
162(2)
9.2 Shallow ditch systems
164(8)
9.2.1 Types of shallow ditch systems
164(5)
9.2.2 Some technical aspects of shallow ditch systems
169(3)
9.3 Mole drainage systems
172(3)
9.4 Pipe drainage systems
175(1)
9.5 Complementary measures
176(3)
9.5.1 Sub-soiling
176(2)
9.5.2 Deep ploughing
178(1)
9.5.3 Chemical amendments and organic matter
178(1)
9.5.4 Land levelling
178(1)
10 Main drainage systems
179(14)
10.1 Main features
179(8)
10.1.1 Drainage basin (watershed, catchment)
180(1)
10.1.2 Types and alignment of drainage canals
181(2)
10.1.3 Outlet and water levels
183(2)
10.1.4 Outlet structures
185(2)
10.2 Lowland and upland drainage
187(6)
10.2.1 Lowland polder
187(1)
10.2.2 River polders
188(2)
10.2.3 Upland discharges
190(1)
10.2.4 Drainage of urban areas
191(2)
PART IV Design
193(98)
11 Design of pipe drainage systems
195(32)
11.1 Flow patterns
195(4)
11.2 Drain spacing formulae
199(1)
11.3 Hooghoudt formula
200(5)
11.3.1 Use of the Hooghoudt formula
201(1)
11.3.2 Notes on the Hooghoudt formula
201(3)
11.3.3 Drain spacing determination in anisotropic soils
204(1)
11.4 Non-steady state drainage formulae
205(7)
11.4.1 Falling watertable (Glover-Dumm formula)
206(3)
11.4.2 Fluctuating watertable (de Zeeuw and Hellinga formula)
209(3)
11.5 Basic design criteria
212(6)
11.5.1 Criteria for off-season drainage
212(2)
11.5.2 Criteria for crop-season drainage
214(3)
11.5.3 The impact of drain depth and drainable pore space
217(1)
11.5.4 Drainage criteria determined by simulation
217(1)
11.6 Drain depth
218(3)
11.7 Pipe diameter
221(6)
12 Design discharges
227(34)
12.1 Discharge transformation
227(4)
12.2 Design considerations
231(2)
12.3 Statistical analysis of observed discharges
233(1)
12.4 Flat basins
234(6)
12.4.1 Subsurface drainage
235(2)
12.4.2 Shallow drainage
237(2)
12.4.3 Further guidance for flat basins
239(1)
12.5 Sloping basins
240(9)
12.5.1 Rational formula
240(4)
12.5.2 Curve number method
244(2)
12.5.3 Synthetic hydrographs
246(3)
12.6 Area reduction formulae
249(1)
12.7 Discharge reduction through storage
250(11)
12.7.1 Retention reservoirs
251(5)
12.7.2 Canal storage
256(5)
13 Design of drainage canals, pumps and structures
261(30)
13.1 Drainage canals
261(9)
13.1.1 Discharge rate
263(2)
13.1.2 Hydraulic gradient and water levels
265(2)
13.1.3 Permissible flow velocities
267(1)
13.1.4 Cross-section
267(1)
13.1.5 Roughness coefficient
268(1)
13.1.6 Freeboard
268(2)
13.2 Structures in drainage canals
270(6)
13.2.1 Culverts and bridges
270(1)
13.2.2 Weirs
271(1)
13.2.3 Backwater curves
272(2)
13.2.4 Example canal design
274(2)
13.3 Tidal outlets
276(4)
13.3.1 Local variations in tide
276(2)
13.3.2 Discharge through a sluice
278(1)
13.3.3 Example of calculations
279(1)
13.4 Pumps
280(11)
13.4.1 Types of pumps
282(1)
13.4.2 Pumping head and characteristics
283(2)
13.4.3 Pump selection
285(2)
13.4.4 Sump and intake design
287(1)
13.4.5 Power and cost calculations
287(1)
13.4.6 Example cost calculations of an electrically driven pump
288(3)
PART V Salinity control
291(64)
14 Soil salinity
293(26)
14.1 Forms of occurrence and distribution of salts in the soil
293(5)
14.1.1 The soil solution
295(1)
14.1.2 Adsorbed cations
295(2)
14.1.3 Equilibrium relationships
297(1)
14.1.4 Distribution of salts in the soil
298(1)
14.2 Agricultural impacts; diagnosis and assessment
298(10)
14.2.1 Osmotic problems
299(5)
14.2.2 Toxicity problems
304(2)
14.2.3 Dispersion problems
306(1)
14.2.4 Corrosion problems
307(1)
14.3 Classification
308(3)
14.3.1 Classification systems
308(2)
14.3.2 Field appearance
310(1)
14.4 Conventional mapping and sampling
311(4)
14.4.1 Sampling
311(1)
14.4.2 Laboratory analysis
312(3)
14.5 New salinity measurement and mapping techniques
315(4)
14.5.1 The EM38
316(1)
14.5.2 Time Domain Reflectometry
316(1)
14.5.3 Remote Sensing methods
317(2)
15 Irrigation induced salinisation
319(16)
15.1 Salinisation by the applied irrigation water
319(1)
15.2 Salinisation from the groundwater (capillary salinisation)
320(3)
15.2.1 Critical watertable depth
321(1)
15.2.2 Factors influencing capillary salinisation
321(2)
15.3 Sodification
323(1)
15.4 Salt balance of irrigated land
323(5)
15.4.1 Leaching requirement calculations
326(1)
15.4.2 Regional salt balances
327(1)
15.5 Irrigation water quality
328(7)
15.5.1 Salinity hazard
329(1)
15.5.2 Sodicity hazard
330(1)
15.5.3 Toxicity hazards
331(1)
15.5.4 Examples of irrigation water quality appraisal
332(3)
16 Drainage of irrigated land
335(20)
16.1 Waterlogging and salinity
335(1)
16.2 Surface drainage
336(2)
16.3 Pipe drainage systems
338(10)
16.3.1 Drain depth
339(2)
16.3.2 Design criteria
341(4)
16.3.3 Layout patterns
345(2)
16.3.4 Pipe diameter
347(1)
16.4 Well or vertical drainage
348(3)
16.4.1 Types of aquifers
348(2)
16.4.2 Design of well (vertical) drainage
350(1)
16.5 Main drainage
351(4)
16.5.1 Design discharge
352(1)
16.5.2 Disposal of saline drainage water
352(3)
PART VI Special topics
355(62)
17 Seepage and interception
357(12)
17.1 Drainage systems for sloping land
357(3)
17.1.1 Longitudinal drainage
358(1)
17.1.2 Transverse drainage
358(2)
17.2 Interception
360(3)
17.2.1 Interception of seepage down the slope
360(2)
17.2.2 Interception of canal seepage
362(1)
17.3 Natural drainage of river valleys
363(1)
17.4 Seepage into a polder
364(3)
17.4.1 Semi-confined flow
364(2)
17.4.2 Phreaticflow
366(1)
17.5 Seep zones and springs
367(2)
18 Reclamation and drainage of unripened soils
369(12)
18.1 The soil ripening processes
369(2)
18.1.1 Physical ripening
369(2)
18.1.2 Other ripening processes
371(1)
18.2 Reclamation and drainage methods
371(3)
18.2.1 Early reclamation stage
371(1)
18.2.2 Development of the hydraulic conductivity (K-value)
372(1)
18.2.3 Advanced reclamation stage
372(1)
18.2.4 Drainage, evaporation and ripening
373(1)
18.3 Acid sulphate soils
374(1)
18.3.1 Acidification processes
374(1)
18.3.2 Neutralisation and reclamation
374(1)
18.3.3 Diagnosis
375(1)
18.4 Subsidence prediction
375(6)
18.4.1 Ripening subsidence
376(1)
18.4.2 Settlement subsidence due to lowering of the watertable
376(2)
18.4.3 Oxidation of peat soils
378(1)
18.4.4 Experiences in the Netherlands
378(3)
19 Drainage of rice lands
381(10)
19.1 Surface drainage
381(5)
19.2 Subsurface drainage
386(1)
19.3 Crop diversification
387(1)
19.4 Flood control
388(3)
20 Controlled drainage
391(14)
20.1 Issues and developments
391(1)
20.2 Design considerations
392(8)
20.2.1 Layout and technical provisions
393(2)
20.2.2 Drain depth
395(1)
20.2.3 Reuse arrangements
396(1)
20.2.4 Discharge control and watertable management
397(3)
20.3 Operation and maintenance by farmers
400(3)
20.4 Controlled drainage at the regional level
403(2)
21 Computer applications
405(12)
21.1 Drainage design applications
405(3)
21.1.1 Field systems
406(1)
21.1.2 Canal systems
406(2)
21.1.3 Preparation of drawings and documents
408(1)
21.2 Rainfall discharge models
408(1)
21.2.1 TR-20 model
409(1)
21.2.2 HEC-HMS
409(1)
21.3 Ground water flow models
409(2)
21.3.1 Spreadsheet models
410(1)
21.3.2 MODFLOW and integrated programs
410(1)
21.3.3 SGMP and SOURCE
410(1)
21.4 Agrohydrological models
411(3)
21.4.1 DRAINMOD version 6
412(1)
21.4.2 SWAP
413(1)
21.5 Salinity prediction models
414(3)
21.5.1 SALTMOD
414(1)
21.5.2 WATSUIT
415(2)
PART VII Management and New Developments
417(40)
22 Research and innovation
419(6)
22.1 Hydroluis pipe-envelope drainage
419(1)
22.2 Capiphon drain
420(1)
22.3 Precision agriculture for water quality control
420(1)
22.4 Bi-level subsurface drainage
421(4)
23 Institutional, organisational and financial arrangements
425(10)
23.1 Drainage laws
425(1)
23.2 Development and management models
426(2)
23.2.1 Public/private good model
426(1)
23.2.2 Participatory development
426(2)
23.2.3 Management Transfer
428(1)
23.3 Public drainage organisation
428(2)
23.4 Financing
430(5)
23.4.1 Investments
430(1)
23.4.2 Operation and maintenance costs
431(1)
23.4.3 Fee systems
431(4)
24 Maintenance
435(14)
24.1 Classification
435(1)
24.2 Organisation, planning and execution
436(1)
24.3 Maintenance of open drainage canals
436(6)
24.3.1 Problems
436(1)
24.3.2 Requirements
437(3)
24.3.3 Methods and equipment
440(2)
24.3.4 Environmental considerations
442(1)
24.4 Maintenance of pipe drains
442(4)
24.4.1 Pipe cleaning
443(1)
24.4.2 Entry of roots
444(1)
24.4.3 Chemical clogging (iron ochre, gypsum)
444(1)
24.4.4 Access facilities
445(1)
24.4.5 Costs
446(1)
24.5 Developing countries
446(3)
25 Performance assessment and benchmarking
449(8)
25.1 Drainage design and performance
449(1)
25.2 Indicators
450(2)
25.3 Performance assessment procedure
452(2)
25.3.1 Preliminary investigations (first step)
453(1)
25.3.2 Primary investigation (second step)
453(1)
25.3.3 Cause analysis (third step)
453(1)
25.4 Performance checking of pipe systems
454(1)
25.5 Causes of under-performance of drainage systems
455(2)
References and further reading 457(16)
Index 473
Willem F. Vlotman worked with Dutch and American consultants on agricultural drainage, urban drainage and irrigation projects in the Netherlands, the West Indies and Asia. In 1988, he joined the International Institute for Land Reclamation and Improvement (ILRI) and has worked for this organisation in Pakistan, Egypt and the Netherlands. In 2004 he immigrated to Australia and worked with the Murray-Darling Basin Authority until retirement in 2017. Willem Vlotman was chairman of the Working Group on Drainage of the international Commission on Irrigation and Drainage (ICID) from 1995-2013.

Lambert K. Smedema worked most of his career for Euroconsult on irrigation in Africa and South America and on drainage in the Middle East and Asia. He was a lecturer/researcher at the University of Nairobi and at the Delft University of Technology. During the nineties, he worked as a consultant with the World Bank and with the Food and Agriculture Organization of the United Nations. Lambert Smedema is currently working as an independent consultant.

David W. Rycroft began his professional career working for the UK Ministry of Agriculture at their Field Drainage Experimental Unit based in Cambridge. He subsequently joined consultants Sir M MacDonald and Partners and worked as a salinity control and land drainage specialist on large projects in Iraq, Somalia and Egypt. In 1979, David Rycroft joined the Institute of Irrigation Studies (Southampton University) to teach in combination with his overseas consultancy work.