Atjaunināt sīkdatņu piekrišanu

E-grāmata: Modern Methods in Crop Protection Research

Edited by (Burscheid, Germany), Edited by (Heidelberg, Germany), Edited by (Bayer CropScience, Monheim, Germany), Edited by (BASF AG, Ludwigshafen, Germany)
  • Formāts: PDF+DRM
  • Izdošanas datums: 08-Feb-2013
  • Izdevniecība: Blackwell Verlag GmbH
  • Valoda: eng
  • ISBN-13: 9783527655939
Citas grāmatas par šo tēmu:
  • Formāts - PDF+DRM
  • Cena: 166,50 €*
  • * ši ir gala cena, t.i., netiek piemērotas nekādas papildus atlaides
  • Ielikt grozā
  • Pievienot vēlmju sarakstam
  • Šī e-grāmata paredzēta tikai personīgai lietošanai. E-grāmatas nav iespējams atgriezt un nauda par iegādātajām e-grāmatām netiek atmaksāta.
  • Bibliotēkām
  • Formāts: PDF+DRM
  • Izdošanas datums: 08-Feb-2013
  • Izdevniecība: Blackwell Verlag GmbH
  • Valoda: eng
  • ISBN-13: 9783527655939
Citas grāmatas par šo tēmu:

DRM restrictions

  • Kopēšana (kopēt/ievietot):

    nav atļauts

  • Drukāšana:

    nav atļauts

  • Lietošana:

    Digitālo tiesību pārvaldība (Digital Rights Management (DRM))
    Izdevējs ir piegādājis šo grāmatu šifrētā veidā, kas nozīmē, ka jums ir jāinstalē bezmaksas programmatūra, lai to atbloķētu un lasītu. Lai lasītu šo e-grāmatu, jums ir jāizveido Adobe ID. Vairāk informācijas šeit. E-grāmatu var lasīt un lejupielādēt līdz 6 ierīcēm (vienam lietotājam ar vienu un to pašu Adobe ID).

    Nepieciešamā programmatūra
    Lai lasītu šo e-grāmatu mobilajā ierīcē (tālrunī vai planšetdatorā), jums būs jāinstalē šī bezmaksas lietotne: PocketBook Reader (iOS / Android)

    Lai lejupielādētu un lasītu šo e-grāmatu datorā vai Mac datorā, jums ir nepieciešamid Adobe Digital Editions (šī ir bezmaksas lietotne, kas īpaši izstrādāta e-grāmatām. Tā nav tas pats, kas Adobe Reader, kas, iespējams, jau ir jūsu datorā.)

    Jūs nevarat lasīt šo e-grāmatu, izmantojot Amazon Kindle.

This handbook and ready reference highlights a couple of basic aspects of recently developed new methods in modern crop protection research, authored by renowned experts from major agrochemical companies.
Organized into four major parts that trace the key phases of the compound development process, the first section addresses compound design, while the second covers newly developed methods for the identification of the mode of action of agrochemical compounds. The third part describes methods used in improving the bioavailability of compounds, and the final section looks at modern methods for risk assessment. As a result, the agrochemical developer will find here a valuable toolbox of advanced methods, complete with first-hand practical advice and copious examples from current industrial practice.
Preface xv
List of Contributors
xix
Part I Methods for the Design and Optimization of New Active Ingredients
1(128)
1 High-Throughput Screening in Agrochemical Research
3(18)
Mark Drewes
Klaus Tietjen
Thomas C. Sparks
1.1 Introduction
3(3)
1.2 Target-Based High-Throughput Screening
6(7)
1.2.1 Targets
6(3)
1.2.2 High-Throughput Screening Techniques
9(4)
1.3 Other Screening Approaches
13(1)
1.3.1 High-Throughput Virtual Screening
13(1)
1.4 In Vivo High-Throughput Screening
13(4)
1.4.1 Compound Sourcing and In-Silico Screening
15(2)
1.5 Conclusions
17(4)
Acknowledgments
18(1)
References
18(3)
2 Computational Approaches in Agricultural Research
21(22)
Klaus-Jurgen Schleifer
2.1 Introduction
21(1)
2.2 Research Strategies
21(1)
2.3 Ligand-Based Approaches
22(4)
2.4 Structure-Based Approaches
26(7)
2.5 Estimation of Adverse Effects
33(1)
2.6 In-Silico Toxicology
34(1)
2.7 Programs and Databases
34(5)
2.7.1 In-Silico Toxicology Models
36(3)
2.8 Conclusion
39(4)
References
40(3)
3 Quantum Chemical Methods in the Design of Agrochemicals
43(30)
Michael Schindler
3.1 Introduction
43(1)
3.2 Computational Quantum Chemistry: Basics, Challenges, and New Developments
44(3)
3.3 Minimum Energy Structures and Potential Energy Surfaces
47(4)
3.4 Physico-Chemical Properties
51(9)
3.4.1 Electrostatic Potential, Fukui Functions, and Frontier Orbitals
53(2)
3.4.2 Magnetic Properties
55(2)
3.4.3 pKa Values
57(2)
3.4.4 Solvation Free Energies
59(1)
3.4.5 Absolute Configuration of Chiral Molecules
60(1)
3.5 Quantitative Structure-Activity Relationships
60(6)
3.5.1 Property Fields, Wavelets, and Multi-Resolution Analysis
61(2)
3.5.2 The CoMFA Steroid Dataset
63(1)
3.5.3 A Neonicotinoid Dataset
64(2)
3.6 Outlook
66(7)
References
67(6)
4 The Unique Role of Halogen Substituents in the Design of Modern Crop Protection Compounds
73(56)
Peter Jeschke
4.1 Introduction
73(2)
4.2 The Halogen Substituent Effect
75(11)
4.2.1 The Steric Effect
76(2)
4.2.2 The Electronic Effect
78(1)
4.2.2.1 Electronegativities of Halogens and Selected Elements/Groups on the Pauling Scale
78(1)
4.2.2.2 Effect of Halogen Polarity of the C-Halogen Bond
79(1)
4.2.2.3 Effect of Halogens on pKa Value
79(1)
4.2.2.4 Improving Metabolic, Oxidative, and Thermal Stability with Halogens
80(2)
4.2.3 Effect of Halogens on Physico-Chemical Properties
82(1)
4.2.3.1 Effect of Halogens on Molecular Lipophilicity
82(2)
4.2.3.2 Classification in the Disjoint Principle Space
84(1)
4.2.4 Effect of Halogens on Shift of Biological Activity
84(2)
4.3 Insecticides and Acaricides Containing Halogens
86(13)
4.3.1 Voltage-Gated Sodium Channel (vgSCh) Modulators
86(1)
4.3.1.1 Pyrethroids of Type A
86(3)
4.3.1.2 Pyrethroids of Type B
89(1)
4.3.1.3 Pyrethroids of Type C
90(1)
4.3.2 Voltage-Gated Sodium Channel (vgSCh) Blockers
90(1)
4.3.3 Inhibitors of the y-Aminobutyric Acid (GABA) Receptor/Chloride Ionophore Complex
91(2)
4.3.4 Insect Growth Regulators (IGRs)
93(3)
4.3.5 Mitochondrial Respiratory Chain
96(1)
4.3.5.1 Inhibitors of Mitochondrial Electron Transport at Complex I
96(1)
4.3.5.2 Inhibitors of Q0 Site of Cytochrome bc1 - Complex III
97(1)
4.3.5.3 Inhibitors of Mitochondrial Oxidative Phosphorylation
97(1)
4.3.6 Ryanodine Receptor (RyR) Effectors
98(1)
4.4 Fungicides Containing Halogens
99(9)
4.4.1 Sterol Biosynthesis Inhibitors (SBIs) and Demethylation Inhibitors (DMIs)
99(2)
4.4.2 Mitochondrial Respiratory Chain
101(1)
4.4.2.1 Inhibitors of Succinate Dehydrogenase (SDH)- Complex II
101(3)
4.4.2.2 Inhibitors of Q0 Site of Cytochrome bc1 - Complex III
104(3)
4.4.2.3 NADH Inhibitors - Complex I
107(1)
4.4.3 Fungicides Acting on Signal Transduction
107(1)
4.5 Plant Growth Regulators (PGRs) Containing Halogens
108(1)
4.5.1 Reduction of Internode Elongation: Inhibition of Gibberellin Biosynthesis
108(1)
4.6 Herbicides Containing Halogens
109(10)
4.6.1 Inhibitors of Carotenoid Biosynthesis: Phytoene Desaturase (PDS) Inhibitors
109(2)
4.6.2 Inhibitors of Acetolactate Synthase (ALS)
111(1)
4.6.2.1 Sulfonylurea Herbicides
111(4)
4.6.2.2 Sulfonylaminocarbonyl-Triazolone Herbicides (SACTs)
115(1)
4.6.2.3 Triazolopyrimidine Herbicides
116(1)
4.6.3 Protoporphyrinogen IX Oxidase (PPO)
117(2)
4.7 Summary and Outlook
119(10)
References
119(10)
Part II New Methods to Identify the Mode of Action of Active Ingredients
129(88)
5 RNA Interference (RNAi) for Functional Genomics Studies and as a Tool for Crop Protection
131(30)
Bernd Essigmann
Eric Paget
Frederic Schmitt
5.1 Introduction
131(1)
5.2 RNA Silencing Pathways
131(3)
5.2.1 The MicroRNA (miRNA) Pathway
133(1)
5.2.2 The Small Interfering Pathway (siRNA)
134(1)
5.3 RNAi as a Tool for Functional Genomics in Plants
134(4)
5.4 RNAi as a Tool for Engineering Resistance against Fungi and Oomycetes
138(2)
5.5 RNAi as a Tool for Engineering Insect Resistance
140(2)
5.6 RNAi as a Tool for Engineering Nematodes Resistance
142(2)
5.7 RNAi as a Tool for Engineering Virus Resistance
144(5)
5.8 RNAi as a Tool for Engineering Bacteria Resistance
149(1)
5.9 RNAi as a Tool for Engineering Parasitic Weed Resistance
150(3)
5.10 RNAi Safety in Crop Plants
153(1)
5.11 Summary and Outlook
153(8)
References
153(8)
6 Fast Identification of the Mode of Action of Herbicides by DNA Chips
161(14)
Peter Eckes
Marco Busch
6.1 Introduction
161(1)
6.2 Gene Expression Profiling: A Method to Measure Changes of the Complete Transcriptome
162(2)
6.3 Classification of the Mode of Action of an Herbicide
164(1)
6.4 Identification of Prodrugs by Gene Expression Profiling
165(4)
6.5 Analyzing the Affected Metabolic Pathways
169(2)
6.6 Gene Expression Profiling: Part of a Toolbox for Mode of Action Determination
171(4)
References
172(3)
7 Modern Approaches for Elucidating the Mode of Action of Neuromuscular Insecticides
175(22)
Daniel Cordova
7.1 Introduction
175(1)
7.2 Biochemical and Electrophysiological Approaches
176(7)
7.2.1 Biochemical Studies
176(3)
7.2.2 Electrophysiological Studies on Native and Expressed Targets
179(1)
7.2.2.1 Whole-Cell Voltage Clamp Studies
179(1)
7.2.2.2 Oocyte Expression Studies
180(2)
7.2.3 Automated Two-Electrode Voltage-Clamp TEVC Recording Platforms
182(1)
7.3 Fluorescence-Based Approaches for Mode of Action Elucidation
183(4)
7.3.1 Calcium-Sensitive Probes
183(3)
7.3.2 Voltage-Sensitive Probes
186(1)
7.4 Genomic Approaches for Target Site Elucidation
187(4)
7.4.1 Chemical-to-Gene Screening
187(3)
7.4.2 Double-Stranded RNA Interference
190(1)
7.4.3 Metabolomics
191(1)
7.5 Conclusion
191(6)
References
192(5)
8 New Targets for Fungicides
197(20)
Klaus Tietjen
Peter H. Schreier
8.1 Introduction: Current Fungicide Targets
197(2)
8.2 A Retrospective Look at the Discovery of Targets for Fungicides
199(1)
8.3 New Sources for New Fungicide Targets in the Future?
199(1)
8.4 Methods to Identify a Novel Target for a Given Compound
200(2)
8.4.1 Microscopy and Cellular Imaging
200(1)
8.4.2 Cultivation on Selective Media
200(1)
8.4.3 Incorporation of Isotopically Labeled Precursors and Metabolomics
201(1)
8.4.4 Affinity Methods
201(1)
8.4.5 Resistance Mutant Screening
201(1)
8.4.6 Gene Expression Profiling and Proteomics
202(1)
8.5 Methods of Identifying Novel Targets without Pre-Existing Inhibitors
202(11)
8.5.1 Biochemical Ideas to Generate Novel Fungicide Targets
203(1)
8.5.2 Genomics and Proteomics
203(10)
8.6 Non-Protein Targets
213(1)
8.7 Resistance Inducers
213(1)
8.8 Beneficial Side Effects of Commercial Fungicides
214(1)
8.9 Concluding Remarks
214(3)
References
214(3)
Part III New Methods to Improve the Bioavailability of Active Ingredients
217(90)
9 New Formulation Developments
219(30)
Rolf Pontzen
Arnoldus W.P. Vermeer
9.1 Introduction
219(4)
9.2 Drivers for Formulation Type Decisions
223(2)
9.3 Description of Formulation Types, Their Properties, and Problems during Development
225(10)
9.3.1 Pesticides Dissolved in a Liquid Continuous Phase
225(3)
9.3.2 Crystalline Pesticides in a Liquid Continuous Phase
228(4)
9.3.3 Pesticides in a Solid Matrix
232(3)
9.4 Bioavailability Optimization
235(11)
9.4.1 Spray Formation and Retention
236(2)
9.4.2 Spray Deposit Formation and Properties
238(2)
9.4.3 Cuticular Penetration
240(2)
9.4.3.1 Cuticular Penetration Test
242(1)
9.4.3.2 Effect of Formulation on Cuticular Penetration
243(3)
9.5 Conclusions and Outlook
246(3)
References
247(2)
10 Polymorphism and the Organic Solid State: Influence on the Optimization of Agrochemicals
249(24)
Britta Olenik
Gerhard Thielking
10.1 Introduction
249(1)
10.2 Theoretical Principles of Polymorphism
250(5)
10.2.1 The Solid State
250(1)
10.2.2 Definition of Polymorphism
251(1)
10.2.3 Thermodynamics
251(1)
10.2.3.1 Monotropism and Enantiotropism
251(1)
10.2.3.2 Energy Temperature Diagrams and the Rules
252(2)
10.2.4 Kinetics of Crystallization: Nucleation
254(1)
10.3 Analytical Characterization of Polymorphs
255(13)
10.3.1 Differential Thermal Analysis and Differential Scanning Calorimetry
256(2)
10.3.2 Thermogravimetry
258(1)
10.3.3 Hot-Stage Microscopy
259(2)
10.3.4 IR and Raman Spectroscopies
261(4)
10.3.5 X-Ray Analysis
265(3)
10.4 Patentability of Polymorphs
268(2)
10.5 Summary and Outlook
270(3)
Acknowledgments
270(1)
References
270(3)
11 The Determination of Abraham Descriptors and Their Application to Crop Protection Research
273(34)
Eric D. Clarke
Laura J. Mallon
11.1 Introduction
273(1)
11.2 Definition of Abraham Descriptors
274(1)
11.3 Determination of Abraham Descriptors: General Approach
275(6)
11.3.1 V and E Descriptors
276(1)
11.3.2 A, B, and S Descriptors
277(1)
11.3.3 A, B, S, and L Descriptors
277(1)
11.3.4 LSER Equations for Use in Determining Descriptors
278(2)
11.3.5 Prediction of Abraham Descriptors
280(1)
11.4 Determination of Abraham Descriptors: Physical Properties
281(2)
11.5 Determination of Abraham Descriptors: Examples
283(13)
11.5.1 Herbicides: Diuron (1)
284(1)
11.5.2 Herbicides: Simazine (2) and Atrazine (3)
285(3)
11.5.3 Herbicides: Acetochlor (4) and Alachlor (5)
288(1)
11.5.4 Insecticides: Fipronil (6)
289(1)
11.5.5 Insecticides: Imidacloprid (7)
290(2)
11.5.6 Insecticides: Chlorantraniliprole (8)
292(1)
11.5.7 Insecticides: Thiamethoxam (9)
293(1)
11.5.8 Fungicides: Azoxystrobin (10)
294(1)
11.5.9 Plant Growth Regulator: Paclobutrazol (11)
295(1)
11.6 Application of Abraham Descriptors: Descriptor Profiles
296(1)
11.7 Application of Abraham Descriptors: LFER Analysis
297(4)
11.7.1 LFERs for RP-HPLC Systems
297(2)
11.7.2 LFERs for Soil Sorption Coefficient (Koc)
299(1)
11.7.3 LFERs for Partitioning into Plant Cuticles
300(1)
11.7.4 LFERs for Root Concentration Factor (RCF)
300(1)
11.7.5 LFER for Transpiration Stream Concentration Factor
301(1)
11.8 Application of Abraham Descriptors: Generality of Approach
301(6)
Acknowledgments
302(1)
References
302(5)
Part IV Modern Methods for Risk Assessment
307(94)
12 Ecological Modeling in Pesticide Risk Assessment: Chances and Challenges
309(26)
Walter Schmitt
12.1 Introduction
309(2)
12.2 Ecological Models in the Regulatory Environment
311(4)
12.2.1 Consideration of Realistic Exposure Patterns
312(1)
12.2.2 Extrapolation to Population Level: The Link to Protection Goals
313(1)
12.2.3 Extrapolation to Organization Levels above Populations
314(1)
12.3 An Overview of Model Approaches
315(13)
12.3.1 Toxicokinetic Models
316(3)
12.3.2 Population Models
319(1)
12.3.2.1 Differential Equation Models
319(1)
12.3.2.2 Matrix Models
320(2)
12.3.2.3 Individual-Based Models
322(3)
12.3.3 Ecosystem or Food-Web Models
325(3)
12.4 Regulatory Challenges
328(7)
References
331(4)
13 The Use of Metabolomics In Vivo for the Development of Agrochemical Products
335(16)
Hennicke G. Kamp
Doerthe Ahlbory-Dieker
Eric Fabian
Michael Herold
Gerhard Krennrich
Edgar Leibold
Ralf Looser
Werner Mellert
Alexandre Prokoudine
Volker Strauss
Tilmann Walk
Jan Wiemer
Bennard van Ravenzwaay
13.1 Introduction to Metabolomics
335(1)
13.2 MetaMap®Tox Data Base
336(1)
13.2.1 Methods
336(1)
13.2.1.1 Animal Treatment and Maintenance Conditions
336(1)
13.2.1.2 Blood Sampling and Metabolite Profiling
336(1)
13.3 Evaluation of Metabolome Data
337(2)
13.3.1 Data Processing
337(1)
13.3.1.1 Metabolite Profiling
337(1)
13.3.1.2 Metabolome Patterns
337(1)
13.3.1.3 Whole-Profile Comparison
338(1)
13.4 Use of Metabolome Data for Development of Agrochemicals
339(6)
13.4.1 General Applicability
339(1)
13.4.2 Case Studies
339(1)
13.4.2.1 Liver Enzyme Induction
339(3)
13.4.2.2 Liver Cancer
342(2)
13.4.3 Chemical Categories
344(1)
13.5 Discussion
345(2)
13.5.1 Challenges and Chances Concerning the Use of Metabolite Profiling in Toxicology
345(2)
13.5.2 Applicability of the MetaMap®Tox Data Base
347(1)
13.6 Concluding Remarks
347(4)
References
348(3)
14 Safety Evaluation of New Pesticide Active Ingredients: Enquiry-Led Approach to Data Generation
351(30)
Paul Parsons
14.1 Background
351(3)
14.2 What Is the Purpose of Mammalian Toxicity Studies?
354(4)
14.3 Addressing the Knowledge Needs of Risk Assessors
358(4)
14.4 Opportunities for Generating Data of Direct Relevance to Human Health Risk Assessment within the Existing Testing Paradigm
362(5)
14.4.1 Dose Selection for Carcinogenicity Studies
362(3)
14.4.2 Integrating Toxicokinetics into Toxicity Study Designs
365(2)
14.5 Enquiry-Led Data Generation Strategies
367(4)
14.5.1 Key Questions to Consider While Identifying Lead Molecules
369(1)
14.5.2 Key Questions to Consider When Selecting Candidates for Full Development
370(1)
14.5.3 Key Questions to Consider for a Compound in Full Development
371(1)
14.6 Conclusions
371(10)
References
378(3)
15 Endocrine Disruption: Definition and Screening Aspects in the Light of the European Crop Protection Law
381(20)
Susanne N. Kolle
Burkhard Flick
Tzutzuy Ramirez
Roland Buesen
Hennicke G. Kamp
Bennard van Ravenzwaay
15.1 Introduction
381(1)
15.2 Endocrine Disruption: Definitions
382(1)
15.3 Current Regulatory Situation in the EU
382(2)
15.4 US EPA Endocrine Disruptor Screening Program and OECD Conceptual Framework for the Testing and Assessment of Endocrine-Disrupting Chemicals
384(1)
15.5 ECETOC Approach
385(3)
15.6 Methods to Assess Endocrine Modes of Action and Endocrine-Related Adverse Effects in Screening and Regulatory Contexts
388(9)
15.6.1 In-Vitro Assays
388(3)
15.6.2 In-Vivo Assays
391(6)
15.7 Proposal for Decision Criteria for EDCs: Regulatory Agencies
397(4)
References
397(4)
Index 401
Peter Jeschke gained his PhD in organic chemistry at the University of Halle/Wittenberg (Germany), after which he moved to Fahlberg-List Company (Germany) to pursue agrochemical research before going to the Institute of Neurobiology and Brain Research, German Academy of Sciences. In 1989 he joined Bayer as lab leader in animal health research and eight years later he took a position at the Bayer Crop Protection Business Group, where he is currently Head of Research Pest Control Chemistry 2. Since 2011, he is honorary professor at the University of Dusseldorf (Germany). Prof. Dr. Jeschke has more than 180 patent applications and scientific publications to his name.



Wolfgang Kramer gained his PhD in organic chemistry from the TU Stuttgart (Germany) in 1968, after which he joined the Institute of Textile Chemistry at Stuttgart University, before moving to Bayer Plant Protection as lab leader in plant protection research in 1970. Between 1984 and 1990 he was Head of Global Chemistry Fungicides, and Head of Insecticide Chemistry thereafter. Retired since 2005, Dr. Kramer has over 250 patent applications and publications to his name.

Ulrich Schirmer received his PhD in organic chemistry from Stuttgart University (Germany) in 1973, and worked subsequently postdoctoral as a researcher at Paris-Orsay (France). He joined BASF in 1974, eventually becoming Senior Vice President responsible for plant protection research for chemical synthesis, process development and biological R&D. Since 2003, he has been working as a freelance consultant to start-ups in the fields of biotechnology, chemistry and agriculture. Dr. Schirmer is author and co-author of more than 100 patent applications and scientific publications.



Matthias Witschel received his PhD in organic chemistry in 1994 at the University of Erlangen-Nurnberg (Germany). After his post-doctoral stay at Stanford University, California (USA), he started in 1996 at BASF in herbicide research, where he is now Principal Scientist in the Global Research Herbicides, Agricultural Products, based in Ludwigshafen (Germany). Dr. Witschel is the author and co-author of over 160 patents and scientific publications.