Atjaunināt sīkdatņu piekrišanu

E-grāmata: Modern Optics and Photonics of Nano- and Microsystems

  • Formāts: 478 pages
  • Izdošanas datums: 15-May-2018
  • Izdevniecība: CRC Press Inc
  • Valoda: eng
  • ISBN-13: 9781351251495
  • Formāts - PDF+DRM
  • Cena: 57,60 €*
  • * ši ir gala cena, t.i., netiek piemērotas nekādas papildus atlaides
  • Ielikt grozā
  • Pievienot vēlmju sarakstam
  • Šī e-grāmata paredzēta tikai personīgai lietošanai. E-grāmatas nav iespējams atgriezt un nauda par iegādātajām e-grāmatām netiek atmaksāta.
  • Formāts: 478 pages
  • Izdošanas datums: 15-May-2018
  • Izdevniecība: CRC Press Inc
  • Valoda: eng
  • ISBN-13: 9781351251495

DRM restrictions

  • Kopēšana (kopēt/ievietot):

    nav atļauts

  • Drukāšana:

    nav atļauts

  • Lietošana:

    Digitālo tiesību pārvaldība (Digital Rights Management (DRM))
    Izdevējs ir piegādājis šo grāmatu šifrētā veidā, kas nozīmē, ka jums ir jāinstalē bezmaksas programmatūra, lai to atbloķētu un lasītu. Lai lasītu šo e-grāmatu, jums ir jāizveido Adobe ID. Vairāk informācijas šeit. E-grāmatu var lasīt un lejupielādēt līdz 6 ierīcēm (vienam lietotājam ar vienu un to pašu Adobe ID).

    Nepieciešamā programmatūra
    Lai lasītu šo e-grāmatu mobilajā ierīcē (tālrunī vai planšetdatorā), jums būs jāinstalē šī bezmaksas lietotne: PocketBook Reader (iOS / Android)

    Lai lejupielādētu un lasītu šo e-grāmatu datorā vai Mac datorā, jums ir nepieciešamid Adobe Digital Editions (šī ir bezmaksas lietotne, kas īpaši izstrādāta e-grāmatām. Tā nav tas pats, kas Adobe Reader, kas, iespējams, jau ir jūsu datorā.)

    Jūs nevarat lasīt šo e-grāmatu, izmantojot Amazon Kindle.

This book cover advances in the study of processes of nonlinear propagation of continuous and pulsed laser radiation in a continuous and micro structured optical media. It details distributed fiber-optical measuring systems, the physical basis of ultra-low laser cooling of atoms, and studies of optical and nonlinear optical properties of nanostructured heterogeneous systems.

 

Introduction xi
1 Fundamentals of nonlinear optics
1(40)
Introduction
1(7)
1.1 Polarization of dielectrics in a constant electric field
8(4)
1.2 Polarization of an isotropic dielectric in a light field
12(5)
1.3 Interaction of high intensity electromagnetic fields with the nonlinear medium
17(10)
1.3.1 Generation of the second harmonics
21(1)
1.3.2 The phase synchronism condition
22(2)
1.3.3 Generation of the second optical harmonic (SHG)
24(3)
1.4 The Kerr effect in a nonlinear medium
27(4)
1.4.1 Static Kerr effect
28(2)
1.4.2 Dynamic (optical) Kerr effect
30(1)
1.5 Kerr self-focusing of light in a nonlinear medium
31(5)
1.6 Plasma self-focusing
36(2)
1.7 Phase self-modulation of light radiation
38(3)
2 Filamentation phenomena and generation of supercontinuum in propagation of laser pulses in a nonlinear medium
41(30)
Introduction
41(19)
2.2 Filamentation of pulsed radiation in gaseous media
60(5)
2.3 Filamentation of laser radiation in the atmosphere
65(6)
3 Photonic crystals
71(33)
Introduction
71(1)
3.1 Band gaps of photonic crystals
71(10)
3.2 Defects in photonic crystals
81(7)
3.3 Photonic crystal fibres
88(16)
3.3.1 Bragg fibre optic lightguides
91(3)
3.3.2 2D-photonic crystal fibres
94(10)
4 Nonlinear optics of fibre waveguides
104(75)
Introduction
104(1)
4.1 Nonlinear optical processes in optical fibres
104(4)
4.2 Waveguide enhancement of the efficiency of nonlinear optical processes in fibre guides
108(2)
4.3 Phase self-modulation of radiation in optical fibres
110(4)
4.4 Effect of dispersion on nonlinear processes in optical fibres
114(3)
4.5 Phase cross-modulation of pulses in fibre guides
117(2)
4.6 Four-wave mixing of waves
119(3)
4.7 Stimulated Raman scattering (SRS) radiation in optical fibres
122(5)
4.8 Stimulated Mandel'shtam-Brillouin scattering in optical fibres
127(3)
4.9 The propagation of ultrashort laser pulses in optical fibres
130(11)
4.9.1 Pumping in the region of normal dispersion
133(5)
4.9.2 Pumping in the region of anomalous dispersion
138(3)
4.10 Generation of a supercontinuum in optical fibres
141(2)
4.11 Nonlinear properties of photonic crystal fibres
143(36)
4.11.1 Dispersive properties of microstructured (MS) optical fibres
145(6)
4.11.2 Generation of a supercontinuum in MS optical fibres, for which the pump pulse wavelength lies in the region of anomalous dispersion
151(13)
4.11.3 Generation of supercontinuum in MS fibre lightguides in pumping in the region of normal dispersion
164(3)
4.11.4 Generation of supercontinuum in MS optical fibres having two zero-dispersion wavelengths
167(6)
4.11.5 Nonlinear optical properties of holey PC optical fibres
173(6)
5 Fibre lasers
179(87)
Introduction
179(2)
5.1 The principle of the fibre laser
181(14)
5.1.1 Active optical fibres
181(7)
5.1.2 Resonators of fibre lasers
188(1)
5.1.2.1 Fabry--Perot type resonators
188(2)
5.1.2.2 Ring fibre resonators
190(1)
5.1.2.3 Resonator based on fibre Bragg gratings
191(3)
5.1.3 Special features of active lightguides as a medium of amplification of radiation
194(1)
5.2 Continuous fibre lasers
195(8)
5.2.1 Fibre lasers based on active fibres doped with neodymium (Nd3+)
196(2)
5.2.2 Lasers based on active lightguides of doped with ytterbium (Yb3+)
198(1)
5.2.3 Fibre-based lasers based on active optical fibres doped with erbium ions (Er3+)
199(2)
5.2.4 Fibre lasers based on active optic fibres, doped with thulium ions (Tm3+)
201(1)
5.2.5 Fibre-based lasers based on active optical fibres, doped with holmium ions (Ho3+)
202(1)
5.3 Fibre lasers based on stimulated Raman scattering of radiation (fibre SRS lasers)
203(15)
5.3.1 The phenomenon of stimulated Raman scattering of radiation in optical fibres
203(5)
5.3.2 Fibre-optic SRS lasers
208(1)
5.3.2.1 Single-stage SRS lasers
208(2)
5.3.2.2 Multistage SRS lasers
210(1)
5.3.2.3 Composite SRS lasers
210(3)
5.3.2.4 Fibre-optic SRS lasers with random distributed feedback
213(5)
5.4 Pulsed fibre lasers
218(48)
5.4.1 Methods for obtaining pulsed radiation from fibre lasers
219(1)
5.4.1.1 Modulation of the quality factor of fibre lasers
219(2)
5.4.1.2 Generation of pulsed radiation due to mode-locking
221(21)
5.4.2 Compensation of dispersion spreading pulses
242(5)
5.4.2.1 Prism compensators of group velocity dispersion
247(3)
5.4.2.2 Grating compensator of the group velocity dispersion
250(2)
5.4.2.3 Compensator for group velocity dispersion based on the Gires--Tournois interferometer
252(2)
5.4.2.4 Compensators of group velocity dispersion based on chirped Bragg mirrors
254(8)
5.4.3 Amplification of ultrashort pulse in fibre lasers
262(4)
6 Photonics of Nanostructured Biomineral Objects and Their Biomimetic Analogues
266(30)
6.1 Morphology and physico-chemical characteristics of spicules of deep-sea glass sponges
269(8)
6.2 The role of the photonic-crystal properties of the spicules of deep-sea sponges during their metabolism
277(3)
6.3 Nonlinear optical properties of the spicules of deep-sea glass sponges
280(3)
6.4 Biomimetic modelling of biosilicate nanocomposite material of DSGS spicules
283(8)
6.4.1 Sol-gel technology of chemical modelling of biomineral materials and their optical characteristics
283(3)
6.4.2 2-D and 3-D biomimetic nanocomposite biomineral structures for photonics, biomedicine, catalysis and sorption
286(5)
6.5 Biosilification in living systems using cloned proteins silicateins
291(5)
7 Dynamic Holography and Optical Novelty-Filters
296(24)
Introduction
296(2)
7.1 The interaction of two plane waves on dynamic holograms in photorefractive crystals
298(4)
7.2 The transfer characteristic of an optical Novelty-filter
302(4)
7.3 Features of optical Novelty-filters
306(4)
7.3.1 Low-frequency and high-frequency Novelty-filters
306(3)
7.3.2 Bandwidth Novelty filter
309(1)
7.4 Novelty-filters based on the use of the phenomenon of fanning in photorefractive crystals
310(10)
7.4.1 Functional Novelty-filters for processing images based on the fanning effect
312(3)
7.4.2 High-frequency correlation real-time Novelty-filters
315(5)
8 Adaptive Optoelectronic Smart Grid Systems for Monitoring Physical Fields and Objects
320(33)
Introduction
320(3)
8.1 Tomographic DFOMS for reconstructing the distributions of scalar and vector physical fields
323(6)
8.2 Extended FOML based on single-fibre multimode interferometers and adaptive spatial filtering methods
329(4)
8.3 Methods for multiplexing fibre-optic measuring lines in Smart Grid monitoring systems
333(20)
8.3.1 Spatial multiplexing
338(2)
8.3.2 Angle multiplexing
340(4)
8.3.3 Spectral multiplexing
344(9)
9 Laser Cooling, Trapping and Control of Atoms
353(37)
Introduction
353(1)
9.1 Doppler cooling
354(3)
9.2 Zeeman cooling
357(5)
9.3 Stopping and trapping atoms
362(3)
9.3.1 Doppler traps
362(1)
9.3.2 Magnetooptical traps
363(2)
9.4 Sisyphus cooling
365(6)
9.5 Laser cooling below the recoil level
371(4)
9.5.1 Cooling of atoms based on the selective coherent trapping of their populations based on their velocity
371(2)
9.5.2 Evaporative cooling of atoms
373(2)
9.6 The physics of cold atoms and its applications
375(15)
9.6.1 One-component plasma
376(1)
9.6.2 Bose---Einstein condensation of atoms
377(3)
9.6.3 Atomic laser
380(3)
9.6.4 Atomic fountain and atomic clock
383(1)
9.6.5 Atomic optics
384(1)
9.6.5.1 Methods of constructing elements of atomic optics
385(4)
9.6.5.2 Atomic optical nanolithography
389(1)
10 Photonics of Nanostructures
390(66)
10.1 Energy spectrum of nanoscale structures
395(16)
10.1.1 Bulk crystal structure
397(1)
10.1.1.1 Energy spectrum of charge carriers in the bulk crystal structure
397(1)
10.1.1.2 Density of electron states in the energy band
398(1)
10.1.2 One-dimensional isolated quantum well and quantum thread
399(1)
10.1.2.1 One-dimensional isolated quantum well
400(3)
10.1.2.2 Quantum thread
403(2)
10.1.2.3 The density of electron states for an isolated one-dimensional quantum well
405(2)
10.1.2.4 The density of states for a quantum thread
407(1)
10.1.3 Quantum dots and the density of states of electrons in them
408(3)
10.2 Exciton states in semiconductor and dielectric materials
411(9)
10.2.1 Free excitons or Wannier--Mott excitons
411(7)
10.2.2 Bound excitons (Frenkel excitons)
418(2)
10.3 Influence of the form of nanoparticles on the energy subsystem of charge carriers
420(12)
10.3.1 Single-particle states in the nanoparticles of the complicated shape
422(4)
10.3.2 Two-particle (exciton) states in nanoparticles with irregular shape geometry
426(6)
10.4 Influence of the environment on the energy spectrum of excitons in nanoparticles
432(12)
10.5 Low-energy optical nonlinearity of liquid nanocomposite media based on nanoparticles
444(12)
Index 456
Yu. N. Kulchin