Atjaunināt sīkdatņu piekrišanu

E-grāmata: Modern Power Electronic Devices: Physics, applications, and reliability

Edited by (Aalborg University, Denmark)
  • Formāts: EPUB+DRM
  • Sērija : Energy Engineering
  • Izdošanas datums: 26-Nov-2020
  • Izdevniecība: Institution of Engineering and Technology
  • Valoda: eng
  • ISBN-13: 9781785619182
Citas grāmatas par šo tēmu:
  • Formāts - EPUB+DRM
  • Cena: 219,15 €*
  • * ši ir gala cena, t.i., netiek piemērotas nekādas papildus atlaides
  • Ielikt grozā
  • Pievienot vēlmju sarakstam
  • Šī e-grāmata paredzēta tikai personīgai lietošanai. E-grāmatas nav iespējams atgriezt un nauda par iegādātajām e-grāmatām netiek atmaksāta.
  • Formāts: EPUB+DRM
  • Sērija : Energy Engineering
  • Izdošanas datums: 26-Nov-2020
  • Izdevniecība: Institution of Engineering and Technology
  • Valoda: eng
  • ISBN-13: 9781785619182
Citas grāmatas par šo tēmu:

DRM restrictions

  • Kopēšana (kopēt/ievietot):

    nav atļauts

  • Drukāšana:

    nav atļauts

  • Lietošana:

    Digitālo tiesību pārvaldība (Digital Rights Management (DRM))
    Izdevējs ir piegādājis šo grāmatu šifrētā veidā, kas nozīmē, ka jums ir jāinstalē bezmaksas programmatūra, lai to atbloķētu un lasītu. Lai lasītu šo e-grāmatu, jums ir jāizveido Adobe ID. Vairāk informācijas šeit. E-grāmatu var lasīt un lejupielādēt līdz 6 ierīcēm (vienam lietotājam ar vienu un to pašu Adobe ID).

    Nepieciešamā programmatūra
    Lai lasītu šo e-grāmatu mobilajā ierīcē (tālrunī vai planšetdatorā), jums būs jāinstalē šī bezmaksas lietotne: PocketBook Reader (iOS / Android)

    Lai lejupielādētu un lasītu šo e-grāmatu datorā vai Mac datorā, jums ir nepieciešamid Adobe Digital Editions (šī ir bezmaksas lietotne, kas īpaši izstrādāta e-grāmatām. Tā nav tas pats, kas Adobe Reader, kas, iespējams, jau ir jūsu datorā.)

    Jūs nevarat lasīt šo e-grāmatu, izmantojot Amazon Kindle.

Power devices are key to modern power systems, performing essential functions such as inverting and changing voltages, buffering and switching. The increasing complexity of power systems, with distributed renewable generation on the rise, is posing challenges to these devices. In recent years, several new devices have emerged, including wide bandgap devices, each with advantages and weaknesses depending on circumstances and applications.

With a device-centric approach, this book begins by introducing the operating principles of all key power electronic components present in today's power electronics. Further chapters cover junction diodes, thyristors, silicon MOSFETs, silicon IGBTs, IGCTs, SiC MOSFETs, GaN metal-insulator-semiconductor field-effect transistors (MIS-FETs), gallium nitride vertical transistors, module design and reliability, switching cell design, and modern insulated gate bipolar transistor (IGBT) gate driving methods for robustness and reliability. A final chapter outlines the prospects and outlooks in power electronics technology and its market.

This book addresses power device technology at the design level, by bridging the gap between semiconductor and materials science and power electronic applications. It provides key information for researchers working with power electronic devices and for power electronic application designers, and it is also a useful resource for academics and industrial researches working on power electronics at the system level, such as industrial machine designers and robot designers.



Power devices are key to modern power systems, performing functions such as inverting and changing voltages, buffering and switching. Following a device-centric approach, this book covers power electronic applications, semiconductor physics, materials science, application engineering, and key technologies such as MOSFET, IGBT and WBG.

About the editor xv
Preface xvii
1 Introduction: Power Electronics challenges 1(12)
Francesco Iannuzzo
1.1 Power Electronics
1(1)
1.2 Power devices: the core of Power Electronics
2(3)
1.3 Wide-bandgap semiconductors
5(2)
1.4 Operational range
7(1)
1.5 Temperature, reliability and other challenges
8(1)
1.6 Summary
9(1)
Note to the reader
10(1)
References
10(3)
2 Junction diodes 13(36)
Lin Liang
2.1 Introduction
13(1)
2.2 PN junction
14(4)
2.2.1 Definition and types
14(1)
2.2.2 Equilibrium PN junction
15(1)
2.2.3 Nonequilibrium PN junction
16(1)
2.2.4 PN junction breakdown
17(1)
2.2.5 PN junction capacitance
18(1)
2.3 PiN diodes
18(9)
2.3.1 Structures and operation principle
18(1)
2.3.2 Characteristics and parameters
19(3)
2.3.3 Typical application
22(1)
2.3.4 Instabilities
23(2)
2.3.5 SiC PiN diodes
25(2)
2.4 FRDs (fast recovery diodes)
27(8)
2.4.1 Structures and operation principle
27(4)
2.4.2 Characteristics and parameters
31(1)
2.4.3 Typical application
32(1)
2.4.4 Instabilities
33(2)
2.5 DSRDs (drift step recovery diodes)
35(8)
2.5.1 Structures and operation principle
35(3)
2.5.2 Characteristics and parameters
38(1)
2.5.3 Typical application
39(1)
2.5.4 SiC DSRDs
40(3)
2.6 Summary
43(1)
Note to the reader
44(1)
References
44(5)
3 Thyristors 49(42)
Jan Vobecky
3.1 Introduction
49(3)
3.2 History and current state
52(2)
3.3 The thyristor structure and its two-transistor analogue
54(4)
3.4 Forward and reverse blocking
58(11)
3.4.1 Advanced methods for optimisation of blocking capability
62(3)
3.4.2 Junction termination
65(4)
3.5 Turn-on into the ON-state
69(7)
3.5.1 Turn on by the gate current IG
70(4)
3.5.2 Turn on by the light pulse
74(1)
3.5.3 Turn on by overcoming the break-over voltage VBO
75(1)
3.5.4 Turn on by a fast rise of the anode voltage (by overcoming the VBO at high dV/dt)
76(1)
3.6 Turn off
76(5)
3.7 Serial and parallel connections
81(7)
3.7.1 Serial connection of thyristors
81(3)
3.7.2 Parallel connection of thyristors
84(4)
3.8 Summary
88(1)
Note to the reader
88(1)
References
88(3)
4 Silicon MOSFETs 91(22)
Gerald Deboy
4.1 Introduction
91(2)
4.2 High-voltage MOSFETs
93(10)
4.2.1 The silicon limit
93(2)
4.2.2 The Superjunction principle
95(2)
4.2.3 Electric characteristics of Superjunction devices
97(6)
4.3 Low- and medium-voltage MOSFETs
103(6)
4.3.1 The vertical trench MOSFET versus the shielded-gate MOSFET
103(2)
4.3.2 Electric characteristic
105(4)
4.4 Summary
109(1)
Note to the reader
109(1)
References
109(4)
5 Silicon IGBTs 113(58)
Munaf Rahimo
Paula Diaz Reigosa
5.1 Introduction
113(1)
5.2 The IGBT structure, equivalent circuit and operation
114(2)
5.3 The IGBT static characteristics
116(2)
5.4 The IGBT switching characteristics
118(10)
5.4.1 Turn-on transient
121(5)
5.4.2 Turn-off transient
126(2)
5.5 The IGBT main requirements and structural evolution
128(8)
5.5.1 Losses reductions due to bulk optimisation
129(3)
5.5.2 Losses reductions due to MOS cell optimisation
132(4)
5.6 Short circuit and related instabilities in IGBTs
136(13)
5.6.1 Short-circuit turn-on transient
137(2)
5.6.2 Short-circuit turn-off transient
139(2)
5.6.3 Short circuit failure modes in IGBTs
141(1)
5.6.4 Analysis of IGBT short circuit failure modes II and II
142(3)
5.6.5 Short circuit oscillation phenomenon
145(4)
5.7 Safe operating area of IGBTs
149(7)
5.7.1 Dynamic avalanche and IGBT failure mode during turn-off
150(1)
5.7.2 IGBT turn-off under SOA conditions
151(4)
5.7.3 Switching self-clamp mode failure during turn-off
155(1)
5.8 IGBT development trends
156(9)
5.8.1 Increase in absolute power
156(5)
5.8.2 Increase in power density
161(4)
5.9 Summary
165(1)
Note to the reader
166(1)
References
166(5)
6 IGCTs 171(52)
Eric Carroll
6.1 Introduction
171(1)
6.2 History
171(1)
6.3 Device types
172(1)
6.4 Gate turn-off thyristors (GTOs)
173(5)
6.5 IGCT operation
178(3)
6.6 Silicon design
181(1)
6.7 Similar devices
182(2)
6.8 Turn-on
184(2)
6.9 Turn-off
186(7)
6.9.1 Stray inductance
189(1)
6.9.2 Device design
189(1)
6.9.3 Temperature
190(3)
6.10 Data-sheet parameters
193(11)
6.10.1 Ratings
193(5)
6.10.2 Characteristics
198(6)
6.11 Gate drive
204(2)
6.12 The clamp circuit
206(4)
6.13 IGCT applications
210(5)
6.13.1 IGCT VSIs and CSIs
210(2)
6.13.2 Series connection
212(2)
6.13.3 Parallel connection
214(1)
6.14 Mechanical mounting
215(1)
6.15 Circuit simulation
215(1)
6.16 Present and future
216(1)
6.17 Reliability
216(3)
6.18 Summary
219(1)
Note to the reader
219(1)
References
220(3)
7 Silicon carbide diodes 223(36)
Jens Peter Konrath
7.1 Introduction
223(1)
7.2 Review of silicon carbide SBD structures
224(8)
7.3 Edge termination and reverse bias reliability
232(5)
7.4 Measurement of application relevant parameters
237(8)
7.5 Operation in applications
245(5)
7.6 Future developments
250(2)
7.7 Summary and further readings
252(1)
Note to the reader
253(1)
References
253(6)
8 SiC MOSFETs 259(36)
Luca Maresca
Alessandro Borghese
Gianpaolo Romano
Asad Fayyaz
Michele Riccio
Giovanni Breglio
Alberto Castellazzi
Andrea Irace
8.1 Introduction
259(3)
8.2 Principle of operation
262(6)
8.2.1 Planar MOSFET
263(2)
8.2.2 Trench-gate MOSFET
265(2)
8.2.3 Super junction MOSFET
267(1)
8.3 SiC/SiO2 interface challenge
268(2)
8.4 A comparison between Si MOSFET and SiC MOSFET
270(2)
8.5 Short circuit capability
272(14)
8.5.1 Short-circuit test
273(1)
8.5.2 Short-circuit failure mechanisms in SiC MOSFETs
274(8)
8.5.3 Short-circuit aging effect
282(2)
8.5.4 Short-circuit gate leakage current
284(2)
8.6 Avalanche capability
286(1)
8.7 Summary
287(1)
Note to the reader
288(1)
References
288(7)
9 GaN metal-insulator-semiconductor field-effect transistors 295(36)
Shu Yang
Shaowen Han
9.1 Introduction: recent progress in GaN power devices and applications
295(4)
9.2 Principle of operation
299(5)
9.2.1 GaN-on-Si power transistor structures
299(1)
9.2.2 Normally-off GaN device technologies
299(3)
9.2.3 Challenges in GaN power transistors
302(2)
9.3 Gate instability and reliability
304(5)
9.3.1 Mechanisms of gate instability
304(2)
9.3.2 Characterization techniques
306(3)
9.3.3 Time-dependent dielectric breakdown
309(1)
9.4 Dynamic performance
309(12)
9.4.1 Dynamic ON-resistance (RoN)
309(6)
9.4.2 Characterization techniques
315(2)
9.4.3 Prospects and solutions
317(4)
9.5 Summary
321(1)
Note to the reader
321(1)
References
321(10)
10 Gallium nitride transistors: applications and vertical solutions 331(16)
Giorgia Longobardi
10.1 Introduction
331(1)
10.2 Advantages of GaN for power devices
331(2)
10.2.1 Material device and system-level benefit of GaN
332(1)
10.3 GaN applications and market trends
333(2)
10.3.1 Applications and market value
333(2)
10.4 GaN power HEMT
335(2)
10.4.1 GaN heterostructure-based transistors
335(2)
10.5 Vertical GaN transistors
337(6)
10.5.1 Fabricated solutions for vertical and quasi-vertical GaN FETs
338(5)
10.6 Summary
343(1)
Note to the reader
344(1)
References
344(3)
11 Module design and reliability 347(38)
Daohui Li
Xiaoping Dai
Guoyou Liu
11.1 Introduction
347(3)
11.2 Multi-physics design for power module
350(14)
11.2.1 EM simulation of power module
351(5)
11.2.2 EM-circuitry design in module packaging
356(1)
11.2.3 Thermal design and thermal analysis
357(5)
11.2.4 Thermal-mechanical design
362(2)
11.3 Enhancement of power module reliability
364(17)
11.3.1 Bonding materials and processes
365(8)
11.3.2 High insulation material and processes
373(4)
11.3.3 Electrical and reliability test
377(2)
11.3.4 Environment test
379(2)
11.4 Summary
381(1)
Acknowledgements
381(1)
Note to the reader
382(1)
References
382(3)
12 Switching cell design 385(32)
Eckart Hoene
Kirill Klein
12.1 Introduction
385(3)
12.2 The concept for integrated switching cell
388(2)
12.3 Thermal interface
390(3)
12.4 Electrical interfaces
393(2)
12.4.1 Insulation: clearance/creepage distances
393(2)
12.5 Mechanical interfaces
395(1)
12.6 DC link design
396(4)
12.6.1 State-of-the-art DC link design
396(1)
12.6.2 DC link design for fast switching power modules
397(1)
12.6.3 Design rules for capacitor Csnubb
398(1)
12.6.4 Damping resistor Rsnubb design
398(2)
12.7 Layout considerations for fast switching applications
400(6)
12.7.1 Low inductive bus bar design
400(3)
12.7.2 Parasitic turn-on
403(2)
12.7.3 Gate drive path layout
405(1)
12.8 Alternative top side chip contact technologies
406(3)
12.8.1 PCB embedding
406(2)
12.8.2 Metal clips and metallized transfer mold
408(1)
12.9 Examples
409(5)
12.9.1 IMS/PCB embedded GaN power module
410(2)
12.9.2 Full PCB SiC power module
412(2)
12.10 Summary
414(2)
Note to the reader
416(1)
References
416(1)
13 Modern insulated gate bipolar transistor (IGBT) gate driving methods for robustness and reliability 417(34)
Haoze Luo
Wuhua Li
Francesco Iannuzzo
13.1 Introduction
417(2)
13.2 Operation principle of IGBTs
419(3)
13.3 Basic IGBT gate driving methods
422(3)
13.3.1 Voltage-source gate drivers
422(1)
13.3.2 Current-source gate drivers
423(1)
13.3.3 Optimization and protection principles
423(2)
13.4 Fault detection and protection methods
425(7)
13.4.1 Voltage and current overshoot
425(3)
13.4.2 Overload and short-circuit event
428(4)
13.4.3 Gate voltage limitations
432(1)
13.5 Active gating methods for enhancing switching characteristics
432(4)
13.5.1 Closed-loop control methodology
432(2)
13.5.2 Closed-loop control implementations
434(2)
13.6 Active thermal control methods using IGBT gate driver
436(9)
13.6.1 Principles for thermal mitigation method
436(1)
13.6.2 Thermal mitigation methods
437(3)
13.6.3 Junction temperature estimation methods
440(5)
13.7 Summary
445(1)
Acknowledgments
446(1)
Note to the reader
446(1)
References
446(5)
14 Prospects and outlooks in power electronics technology and market 451(18)
Elena Barbarini
14.1 Global markets figures
451(2)
14.2 Impact of EV/HEV sector
453(3)
14.3 Wide-bandgap semiconductors
456(6)
14.3.1 Silicon carbide
456(3)
14.3.2 Gallium nitride
459(3)
14.4 Power packaging prospects
462(4)
14.4.1 Power discrete packaging market
463(1)
14.4.2 Power modules packaging market
464(2)
14.5 Summary
466(1)
Note to the reader
466(1)
References
467(2)
Index 469
Francesco Iannuzzo received the M.Sc. degree in Electronic Engineering and the Ph.D. degree in Electronic and Information Engineering from the University of Naples, Italy, in 1997 and 2002, respectively. He is primarily specialized in power device modeling.



He is currently a professor of Reliable Power Electronics at the Aalborg University, Denmark, where he is also part of CORPE, the Center of Reliable Power Electronics. His research interests are in the field of reliability of power devices, including mission-profile based life estimation, condition monitoring, failure modeling, and testing up to MW-scale modules under extreme conditions. He is the author or co-author of more than 220 publications on journals and international conferences, three book chapters, and four patents. Besides publication activity, over the past years, he has been contributing 17 technical seminars about reliability at first conferences as ISPSD, EPE, ECCE, PCIM, and APEC.



Prof. Iannuzzo is a senior member of the IEEE (Industry Application Society, Reliability Society, Power Electronics Society, and Industrial Electronics Society). He currently serves as Associate Editor for the IEEE Journal of Emerging and Selected Topics in Power Electronics, Transactions on Industry Applications, the EPE Journal, and Elsevier Microelectronics Reliability. He is the vice-chair of the IEEE IAS Power Electronic Devices and Components Committee. In 2018 he was the general chair of the 29th ESREF, the first European conference on the reliability of electronics, and has recently been appointed general chair for the EPE 2023 conference in Aalborg.