Atjaunināt sīkdatņu piekrišanu

E-grāmata: Modern Semiconductor Quantum Physics

(Fudan Univ, China & Nus, S'pore)
  • Formāts - PDF+DRM
  • Cena: 61,99 €*
  • * ši ir gala cena, t.i., netiek piemērotas nekādas papildus atlaides
  • Ielikt grozā
  • Pievienot vēlmju sarakstam
  • Šī e-grāmata paredzēta tikai personīgai lietošanai. E-grāmatas nav iespējams atgriezt un nauda par iegādātajām e-grāmatām netiek atmaksāta.
  • Bibliotēkām

DRM restrictions

  • Kopēšana (kopēt/ievietot):

    nav atļauts

  • Drukāšana:

    nav atļauts

  • Lietošana:

    Digitālo tiesību pārvaldība (Digital Rights Management (DRM))
    Izdevējs ir piegādājis šo grāmatu šifrētā veidā, kas nozīmē, ka jums ir jāinstalē bezmaksas programmatūra, lai to atbloķētu un lasītu. Lai lasītu šo e-grāmatu, jums ir jāizveido Adobe ID. Vairāk informācijas šeit. E-grāmatu var lasīt un lejupielādēt līdz 6 ierīcēm (vienam lietotājam ar vienu un to pašu Adobe ID).

    Nepieciešamā programmatūra
    Lai lasītu šo e-grāmatu mobilajā ierīcē (tālrunī vai planšetdatorā), jums būs jāinstalē šī bezmaksas lietotne: PocketBook Reader (iOS / Android)

    Lai lejupielādētu un lasītu šo e-grāmatu datorā vai Mac datorā, jums ir nepieciešamid Adobe Digital Editions (šī ir bezmaksas lietotne, kas īpaši izstrādāta e-grāmatām. Tā nav tas pats, kas Adobe Reader, kas, iespējams, jau ir jūsu datorā.)

    Jūs nevarat lasīt šo e-grāmatu, izmantojot Amazon Kindle.

Modern Semiconductor Quantum Physics has the following constituents: (1) energy band theory: pseudopotential method (empirical and ab initio); density functional theory; quasi-particles; LCAO method; k.p method; spin-orbit splitting; effect mass and Luttinger parameters; strain effects and deformation potentials; temperature effects. (2) Optical properties: absorption and exciton effect; modulation spectroscopy; photo luminescence and photo luminescence excitation; Raman scattering and polaritons; photoionization. (3) Defects and Impurities: effective mass theory and shallow impurity states; deep state cluster method, super cell method,Green's function method; carrier recombination kinetics; trapping transient measurements; electron spin resonance; electron lattice interaction and lattice relaxation effects; multi-phonon nonradiative recombination; negative U center, DX center and EL2 Defects. (4) Semiconductor surfaces: two dimensional periodicity and surface reconstruction; surface electronic states; photo-electron spectroscopy; LEED, STM and other experimental methods. (5) Low-dimensional structures: Heterojunctions, quantum wells; superlattices, quantum-confined Stark effect and Wannier-Stark ladder effects; resonant tunneling, quantum Hall effect, quantum wires and quantum dots.This book can be used as an advanced textbook on semiconductor physics for graduate students in physics and electrical engineering departments. It is also useful as a research reference for solid state scientists and semiconductor device engineers.
Preface vii
Chapter 1 The Energy Band Theory of a Perfect Crystal
1(106)
110 Introduction
1(3)
120 Orthogonalized Plane Wave and Pseudopotential Methods
4(17)
130 Further Discussion on Pseudopotential Methods(*)
21(16)
131 Density Functional Theory
21(2)
132 Self-Consistent Pseudopotential Calculation and Norm-Conserving Pseudopotential
23(2)
133 Local Density Approximation (LDA) of Exchange and Correlation Interactions and Quasi-Particles
25(4)
134 Crystal Total Energy and Structural Parameters
29(8)
140 Linear Combination of Atomic Orbitals
37(15)
150 k.p Method and Effective Mass
52(7)
160 Spin-Orbit Coupling and Splitting(*)
59(19)
170 Effects of Strain on Cubic Semiconductor Band Structures(*)
78(18)
171 Stress and Strain in Cubic Semiconductors
79(5)
172 Energy Band Shift and Splitting under Strain-Deformation Potential Theory
84(12)
180 Temperature Dependence of Semiconductor Band Energies(*)
96(11)
Chapter 2 Optical Properties of Semiconductors
107(114)
210 Intrinsic Absorption Close to the Absorption Edge
108(15)
211 Direct Transition Absorption Edge
109(5)
212 Indirect Transition Absorption Edge
114(9)
220 Excitons and Excitonic Effects
123(17)
221 Excitons
123(7)
222 The Effects of Excitons on the Direct Transition Absorption Spectrum
130(4)
223 The Effects of Excitons on the Indirect Transition Absorption Spectrum
134(6)
230 High Energy Transition and Critical Point in the Brillouin Zone
140(6)
231 Joint Density of States and Critical Points
140(3)
232 Reflection Spectroscopy
143(3)
240 Modulation Spectroscopy(*)
146(19)
241 Introduction
146(4)
242 Dielectric Function in the Absence of an Electric Field
150(1)
243 Local Expansions and the Simple Parabolic Model
151(2)
244 The Variation of Dielectric Function under Low Electric Field
153(5)
245 The Variation of Dielectric Function under Intermediate Electric Field. The Franz-Keldysh Effect
158(7)
250 Free Carrier Absorption
165(5)
251 Intraband Transition
165(2)
252 Interband Transition
167(3)
260 Photoluminescence
170(14)
261 Stimulated Emission and Absorption. Spontaneous Emission
171(3)
262 Different Types of Luminescence Processes (Redundant Spontaneous Emission)
174(10)
270 Relations between Photoluminescence and Photoabsorption(*)
184(11)
271 Generalised Van Roosbroeck-Shockley Relation -- Light Amplification (Stimulated Emission)
184(2)
272 Electron-Lattice Interaction Effect Involving Localized States
186(3)
273 Photoluminescence Excitation (PLE) Spectra
189(6)
280 Inelastic Light Scattering in Semiconductors
195(19)
281 Terminologies and the Classical Theory
195(2)
282 Quantum Mechanical Theory of Raman Scattering
197(6)
283 Resonance Raman Scattering
203(2)
284 Stimulated Raman Scattering (SRS)
205(2)
285 Polaritons
207(7)
290 Photoionization
214(7)
Chapter 3 Electronic States at Defects and Impurities
221(118)
310 Introduction
221(4)
320 General Theory
225(9)
330 Effective Mass Theory
234(12)
340 Deep State Calculation Methods
246(9)
341 Cluster Method
246(3)
342 Periodic Cell (Periodic Clusters or Super Cell) Method
249(1)
343 Green's Function Method
249(6)
350 Carrier Recombination Kinetics
255(11)
351 General Rate Equations
255(3)
352 Dominance Condition of Generation, Recombination and Trapping
258(3)
353 Steady-State Recombination-Generation Rate
261(5)
360 Trapping Transient Characterization of Bound States
266(22)
361 Trapping Transient Analysis in Semiconductor Junction Space Charge Regions
266(6)
362 Trapping Transient Analysis under the Constant Temperature Condition
272(8)
363 Deep Level Transient Spectroscopy (DLTS)
280(8)
370 Magnetic Resonance Absorption Characterization of Bound States(*)
288(15)
371 Interaction of Trapped Electrons with Magnetic Field
288(1)
372 Hyperfine Interaction
289(3)
373 EPR Experiment
292(6)
374 g Tensor
298(2)
375 ENDOR
300(1)
376 ODMR
300(3)
380 Multiphonon Nonradiative Recombination(*)
303(12)
390 Lattice Relaxation Effects on Deep Levels(*)
315(24)
391 Jahn-Teller Distortion
315(1)
392 The Concept of Defect Energy Level and Negative U System
316(5)
393 Extrinsic Self-Trapping
321(3)
394 DX Center and EL2 Defects
324(15)
Chapter 4 Semiconductor Surfaces
339(64)
410 Introduction
339(2)
420 Crystal Structure of the Surfaces
341(5)
421 2-Dimensional Periodicity
341(3)
422 Surface Reconstruction
344(2)
430 Surface Electronic States
346(27)
431 Introduction
346(3)
432 Self-consistent Pseudopotential Method
349(12)
433 LCAO Method
361(3)
434 Greens Function Method
364(9)
440 Further Discussions on the Surface Reconstruction
373(7)
441 Si{100} 2x1 Surface
373(1)
442 Si{111} 2x1 Surface
374(2)
443 Si{111} 7x7 Surface
376(1)
444 III-V Semiconductor Surfaces
377(3)
450 Experimental Methods in Studying the Surface
380(23)
451 An Overview
380(6)
452 Photoelectron Spectroscopy
386(9)
453 Low Energy Electron Diffraction (LEED)
395(8)
Chapter 5 Low-Dimensional Semiconductor Structures
403(92)
510 Introduction
403(3)
520 Heterojunction Band Offset
406(7)
530 Quantum Well
413(16)
531 Bound States in the Quantum Wells
414(3)
532 Density of States in the Quantum Well
417(2)
533 Excitons in Quantum Wells
419(3)
534 Light Absorption and Emission from Optical Transition in Quantum Well
422(7)
540 Superlattices
429(9)
541 General Concepts--Energy Subbands and the Reduced Brillouin Zone of the Superlattices
429(5)
542 Energy Density of States of a Superlattice
434(1)
543 Motion of Electrons under an External Field
435(3)
550 Advanced Energy Band Theory of Quantum Well and Superlattice(*)
438(13)
551 LCAO Method
438(3)
552 Effective Mass (or envelope function) Method and the Valence Band Mixing
441(7)
553 Pseudopotential Method
448(3)
560 Electric Field Effects(*)
451(16)
561 Modulation Spectroscopy of Low Dimensional Structures
451(5)
562 Quantum-Confined Stark Effect in Quantum Wells and Optical Modulation
456(4)
563 Wannier-Stark Ladder Effects in Superlattices
460(7)
570 Resonant Tunneling in Semiconductors
467(9)
580 Quantum Hall Effect(*)
476(10)
590 Quantum Wires and Quantum Dots
486(9)
Appendix A Some Basic Formulae in Quantum Mechanics 495(6)
Appendix B Some Basic Formulae in Solid State Physics 501(7)
Appendix C Some Useful Definitions, Theorems and Tables in Group Theory 508(30)
Appendix D Electron-Lattice Interaction Effects in Semiconductor Statistics 538(3)
Appendix E Macroscopic Optical Response Functions of Solids 541(8)
E1 Propagation of Electromagnetic Waves 541(1)
E2 Reflection of Electromagnetic Waves 542(1)
E3 Transmission of Electromagnetic Waves 543(1)
E4 Kramers-Kronig Dispersion Relations 544(5)
Appendix F Quantum Theory of Electron-Phonon Interaction 549(8)
F1 Quantization of the Electromagnetic Field 549(5)
F2 Mode Density of Photon Field and Some Related Definitions 554(3)
Appendix G Some Useful Data and Tables 557(6)
Subject Index 563