I Simple Systems |
|
1 | (93) |
|
Introduction and resources |
|
|
3 | (6) |
|
|
3 | (1) |
|
|
4 | (1) |
|
|
4 | (1) |
|
|
5 | (1) |
|
|
5 | (1) |
|
|
5 | (1) |
|
|
6 | (3) |
|
Formulation of Translational Systems and review of units |
|
|
9 | (14) |
|
|
10 | (1) |
|
|
11 | (1) |
|
|
12 | (1) |
|
|
13 | (1) |
|
|
14 | (1) |
|
|
14 | (2) |
|
|
16 | (7) |
|
Formulation of Rotational Systems and review of second moments |
|
|
23 | (8) |
|
|
23 | (1) |
|
|
24 | (1) |
|
|
25 | (2) |
|
|
27 | (1) |
|
|
27 | (1) |
|
|
28 | (1) |
|
|
29 | (2) |
|
Undamped Free Vibration and static deflection |
|
|
31 | (12) |
|
|
31 | (1) |
|
|
32 | (1) |
|
|
33 | (1) |
|
|
33 | (2) |
|
|
35 | (1) |
|
|
36 | (1) |
|
|
37 | (1) |
|
|
38 | (1) |
|
|
38 | (5) |
|
Energy Methods for Natural Frequency with an introduction to Hamiltonian methods |
|
|
43 | (12) |
|
|
44 | (1) |
|
|
44 | (2) |
|
Short-cut Method Using Equivalent Elements |
|
|
46 | (1) |
|
|
47 | (1) |
|
|
48 | (1) |
|
|
49 | (1) |
|
|
50 | (5) |
|
Approximations for Distributed Systems and hydrodynamic inertia |
|
|
55 | (14) |
|
|
55 | (3) |
|
|
56 | (1) |
|
|
57 | (1) |
|
Short-Cut Method Using Maximum Energy |
|
|
58 | (1) |
|
Comparison of Different Guesses |
|
|
59 | (1) |
|
|
59 | (1) |
|
Equivalent Mass of Springs |
|
|
60 | (1) |
|
Lamb's Hydrodynamic Inertia |
|
|
61 | (2) |
|
|
63 | (3) |
|
|
66 | (1) |
|
|
66 | (3) |
|
Periodic Force Excitation of Undamped Systems and review of numerical Fourier analysis |
|
|
69 | (14) |
|
|
69 | (1) |
|
|
70 | (2) |
|
|
72 | (2) |
|
|
74 | (1) |
|
|
75 | (2) |
|
|
77 | (1) |
|
|
77 | (2) |
|
Numerical Fourier Analysis |
|
|
79 | (2) |
|
|
81 | (2) |
|
Unbalance Excitation and rotating shafts |
|
|
83 | (10) |
|
|
83 | (2) |
|
|
85 | (1) |
|
|
85 | (1) |
|
|
85 | (2) |
|
|
87 | (2) |
|
|
87 | (1) |
|
|
88 | (1) |
|
|
89 | (1) |
|
Rotating Shafts and Whirling |
|
|
89 | (4) |
|
|
89 | (1) |
|
|
90 | (3) |
II Damped Systems |
|
93 | (96) |
|
Damped Free Vibration and logarithmic decrement |
|
|
95 | (10) |
|
|
95 | (1) |
|
|
96 | (1) |
|
|
97 | (1) |
|
|
97 | (3) |
|
|
100 | (1) |
|
|
101 | (1) |
|
|
102 | (3) |
|
Formulation of Damping Terms and hereditary damping |
|
|
105 | (6) |
|
|
105 | (1) |
|
|
106 | (2) |
|
|
108 | (1) |
|
|
109 | (1) |
|
|
109 | (2) |
|
Periodic Excitation of Damped Systems and forces at the base |
|
|
111 | (12) |
|
|
111 | (1) |
|
|
112 | (2) |
|
Interpretation of Response Curves |
|
|
114 | (1) |
|
|
115 | (1) |
|
|
116 | (1) |
|
|
117 | (2) |
|
Isolation of Force from the Base |
|
|
119 | (4) |
|
Base Excitation and dynamic instrumentation |
|
|
123 | (8) |
|
|
123 | (1) |
|
|
124 | (1) |
|
|
124 | (1) |
|
|
125 | (6) |
|
|
127 | (1) |
|
|
127 | (1) |
|
|
128 | (3) |
|
Unbalance Excitation of Damped Systems and forces at the base |
|
|
131 | (6) |
|
|
131 | (2) |
|
|
133 | (1) |
|
Isolation of Mass Excitation |
|
|
134 | (1) |
|
Overview of Periodic Excitation |
|
|
134 | (2) |
|
|
136 | (1) |
|
Transients by convolution |
|
|
137 | (12) |
|
|
137 | (2) |
|
|
139 | (2) |
|
|
141 | (2) |
|
|
143 | (1) |
|
|
144 | (5) |
|
Shock Spectra and similitude |
|
|
149 | (10) |
|
|
149 | (5) |
|
|
149 | (2) |
|
|
151 | (1) |
|
|
152 | (2) |
|
|
154 | (3) |
|
|
154 | (1) |
|
|
155 | (1) |
|
|
156 | (1) |
|
|
157 | (2) |
|
|
159 | (8) |
|
|
159 | (1) |
|
|
160 | (1) |
|
|
160 | (4) |
|
Central-Difference Method |
|
|
161 | (1) |
|
|
162 | (1) |
|
|
163 | (1) |
|
|
163 | (1) |
|
Other Finite-Difference Methods |
|
|
163 | (1) |
|
|
164 | (3) |
|
Transients by integral transforms |
|
|
167 | (10) |
|
|
167 | (6) |
|
|
169 | (2) |
|
Overview of Transfer Functions |
|
|
171 | (1) |
|
|
171 | (2) |
|
|
173 | (2) |
|
|
175 | (2) |
|
Random Vibrations and statistical concepts |
|
|
177 | (12) |
|
|
177 | (6) |
|
|
178 | (2) |
|
|
180 | (1) |
|
|
181 | (1) |
|
Power Spectral Density (PSD) |
|
|
182 | (1) |
|
|
183 | (1) |
|
|
183 | (3) |
|
|
183 | (1) |
|
|
183 | (1) |
|
|
184 | (1) |
|
|
184 | (1) |
|
|
185 | (1) |
|
|
185 | (1) |
|
|
186 | (1) |
|
|
187 | (2) |
III Multi-Degree-of-Freedom Systems |
|
189 | (100) |
|
Two-Directional Motion and principal coordinates |
|
|
191 | (14) |
|
|
191 | (2) |
|
|
193 | (2) |
|
Definition of Influence Coefficients |
|
|
195 | (1) |
|
Transformation to Simple Systems |
|
|
196 | (5) |
|
|
196 | (1) |
|
|
197 | (1) |
|
Modes as Coordinate Systems |
|
|
198 | (1) |
|
|
199 | (1) |
|
Coordinate Transformation |
|
|
200 | (1) |
|
|
201 | (1) |
|
|
202 | (1) |
|
|
202 | (3) |
|
Multi-Mass Systems from Newton's law |
|
|
205 | (18) |
|
|
205 | (1) |
|
Formulation from Influence Coefficients |
|
|
206 | (1) |
|
Transformation to Simple Systems |
|
|
207 | (5) |
|
|
207 | (2) |
|
|
209 | (1) |
|
|
210 | (1) |
|
|
211 | (1) |
|
|
212 | (1) |
|
Simple Procedure for Unsymmetrical Cases |
|
|
213 | (3) |
|
|
216 | (1) |
|
|
217 | (1) |
|
|
218 | (1) |
|
|
219 | (4) |
|
Combined Translation and Rotation and mass coupling |
|
|
223 | (10) |
|
|
223 | (1) |
|
|
224 | (2) |
|
Preferred Raw Coordinates |
|
|
226 | (1) |
|
|
226 | (1) |
|
|
227 | (1) |
|
|
228 | (2) |
|
|
230 | (1) |
|
|
231 | (2) |
|
Lagrangian Methods and equivalent coupling |
|
|
233 | (8) |
|
|
233 | (1) |
|
|
234 | (1) |
|
Equivalent Masses and Springs |
|
|
235 | (1) |
|
|
236 | (1) |
|
Equivalent Mass of Springs |
|
|
237 | (1) |
|
Hydrodynamic Inertia Coupling |
|
|
238 | (3) |
|
Flexibility Formulation and estimation methods |
|
|
241 | (12) |
|
|
241 | (1) |
|
|
242 | (5) |
|
Flexibility-Matrix Methods |
|
|
247 | (1) |
|
|
247 | (1) |
|
|
248 | (2) |
|
|
250 | (1) |
|
|
251 | (2) |
|
Forced Excitation and modal analysis |
|
|
253 | (10) |
|
|
253 | (2) |
|
|
255 | (2) |
|
|
257 | (2) |
|
The Harmonic Vibration Absorber |
|
|
259 | (4) |
|
Damped Multi-Degree-of-Freedom Systems and state-variable formulations |
|
|
263 | (8) |
|
|
263 | (1) |
|
|
264 | (2) |
|
|
266 | (1) |
|
Hamilton's Canonical Form |
|
|
267 | (2) |
|
|
269 | (2) |
|
|
271 | (8) |
|
|
272 | (2) |
|
|
272 | (1) |
|
|
273 | (1) |
|
|
274 | (1) |
|
|
274 | (1) |
|
Stodola's Gyroscopic Effects |
|
|
275 | (4) |
|
Transfer Matrices and finite elements |
|
|
279 | (10) |
|
|
279 | (6) |
|
Torsional and Translational Systems |
|
|
279 | (4) |
|
|
283 | (2) |
|
|
285 | (3) |
|
|
285 | (1) |
|
|
286 | (1) |
|
|
287 | (1) |
|
|
287 | (1) |
|
|
288 | (1) |
IV Continuous Systems |
|
289 | (60) |
|
Tensioned Strings and threadlines |
|
|
291 | (14) |
|
|
291 | (1) |
|
|
292 | (1) |
|
|
293 | (4) |
|
|
297 | (1) |
|
|
298 | (1) |
|
|
299 | (1) |
|
|
299 | (3) |
|
Finite-Difference Procedure |
|
|
300 | (1) |
|
|
301 | (1) |
|
|
301 | (1) |
|
|
302 | (3) |
|
Pressure and Shear Waves and special end conditions |
|
|
305 | (8) |
|
|
305 | (2) |
|
Shear and Torsional Waves |
|
|
307 | (1) |
|
|
308 | (5) |
|
|
308 | (1) |
|
|
309 | (1) |
|
|
310 | (3) |
|
Continuous Media and acoustic measurements |
|
|
313 | (8) |
|
|
313 | (2) |
|
|
315 | (6) |
|
|
316 | (1) |
|
|
317 | (1) |
|
|
317 | (4) |
|
Beam Vibration and approximate methods |
|
|
321 | (16) |
|
|
322 | (7) |
|
|
322 | (2) |
|
|
324 | (1) |
|
|
325 | (3) |
|
|
328 | (1) |
|
|
329 | (1) |
|
|
329 | (1) |
|
Beams on Multiple Supports |
|
|
330 | (2) |
|
|
330 | (1) |
|
Ideal Distribution of Supports |
|
|
331 | (1) |
|
|
331 | (1) |
|
Effect of Surrounding Fluid |
|
|
331 | (1) |
|
|
332 | (2) |
|
|
334 | (3) |
|
Column Vibration and rails and pipes |
|
|
337 | (8) |
|
|
337 | (1) |
|
|
338 | (1) |
|
Rails on Elastic Foundations |
|
|
339 | (1) |
|
|
340 | (1) |
|
|
341 | (2) |
|
|
343 | (2) |
|
Modal Analyzers and cross-spectra |
|
|
345 | (4) |
|
|
345 | (1) |
|
|
345 | (1) |
|
|
346 | (1) |
|
|
346 | (1) |
|
|
347 | (1) |
|
|
347 | (1) |
|
|
347 | (2) |
V Parametric Excitation |
|
349 | (8) |
|
Time-Varying Coefficients and Mathieu's equation |
|
|
351 | (6) |
|
|
351 | (1) |
|
|
352 | (1) |
|
|
353 | (1) |
|
|
354 | (1) |
|
|
354 | (1) |
|
|
355 | (1) |
|
|
355 | (2) |
VI Non-Linear Vibration |
|
357 | (62) |
|
Linearization and error analysis |
|
|
359 | (6) |
|
|
359 | (1) |
|
|
360 | (1) |
|
|
361 | (2) |
|
|
361 | (1) |
|
|
362 | (1) |
|
|
362 | (1) |
|
|
363 | (1) |
|
|
363 | (1) |
|
|
363 | (2) |
|
The Phase Plane and graphical solutions |
|
|
365 | (12) |
|
|
365 | (1) |
|
|
366 | (11) |
|
Analytical Solution and elliptic integrals |
|
|
377 | (6) |
|
Integration in the Phase Plane |
|
|
377 | (1) |
|
|
378 | (1) |
|
|
379 | (1) |
|
|
380 | (3) |
|
Pseudo-Linearization and equivalent damping |
|
|
383 | (8) |
|
Krylov-Bogoliubov's First Approximation |
|
|
383 | (2) |
|
|
385 | (2) |
|
|
387 | (1) |
|
Self-Sustaining Oscillations |
|
|
388 | (1) |
|
|
389 | (2) |
|
Series Expansions and subharmonics |
|
|
391 | (4) |
|
|
391 | (1) |
|
|
392 | (1) |
|
|
392 | (2) |
|
|
394 | (1) |
|
Numerical Simulation and chaos |
|
|
395 | (4) |
|
|
395 | (4) |
|
Vibration Control active and semi-active |
|
|
399 | (6) |
|
Suspension Performance Criteria |
|
|
399 | (2) |
|
|
400 | (1) |
|
|
400 | (1) |
|
|
400 | (1) |
|
|
401 | (1) |
|
|
401 | (1) |
|
|
401 | (1) |
|
|
401 | (1) |
|
|
402 | (1) |
|
|
403 | (2) |
|
Flow-Induced Vibrations and flow instabilities |
|
|
405 | (8) |
|
|
405 | (1) |
|
|
406 | (3) |
|
|
409 | (1) |
|
|
410 | (1) |
|
|
411 | (2) |
|
|
413 | (6) |
|
|
413 | (1) |
|
|
414 | (1) |
|
|
415 | (1) |
|
|
415 | (1) |
|
|
416 | (1) |
|
|
416 | (1) |
|
|
417 | (2) |
Index |
|
419 | |