Atjaunināt sīkdatņu piekrišanu

Molecular Beam Epitaxy: Materials and Applications for Electronics and Optoelectronics [Hardback]

Edited by , Edited by
Citas grāmatas par šo tēmu:
  • Hardback
  • Cena: 245,82 €
  • Grāmatu piegādes laiks ir 3-4 nedēļas, ja grāmata ir uz vietas izdevniecības noliktavā. Ja izdevējam nepieciešams publicēt jaunu tirāžu, grāmatas piegāde var aizkavēties.
  • Daudzums:
  • Ielikt grozā
  • Piegādes laiks - 4-6 nedēļas
  • Pievienot vēlmju sarakstam
  • Bibliotēkām
Citas grāmatas par šo tēmu:

Covers both the fundamentals and the state-of-the-art technology used for MBE

Written by expert researchers working on the frontlines of the field, this book covers fundamentals of Molecular Beam Epitaxy (MBE) technology and science, as well as state-of-the-art MBE technology for electronic and optoelectronic device applications. MBE applications to magnetic semiconductor materials are also included for future magnetic and spintronic device applications.

Molecular Beam Epitaxy: Materials and Applications for Electronics and Optoelectronics is presented in five parts: Fundamentals of MBE; MBE technology for electronic devices application; MBE for optoelectronic devices; Magnetic semiconductors and spintronics devices; and Challenge of MBE to new materials and new researches. The book offers chapters covering the history of MBE; principles of MBE and fundamental mechanism of MBE growth; migration enhanced epitaxy and its application; quantum dot formation and selective area growth by MBE; MBE of III-nitride semiconductors for electronic devices; MBE for Tunnel-FETs; applications of III-V semiconductor quantum dots in optoelectronic devices; MBE of III-V and III-nitride heterostructures for optoelectronic devices with emission wavelengths from THz to ultraviolet; MBE of III-V semiconductors for mid-infrared photodetectors and solar cells; dilute magnetic semiconductor materials and ferromagnet/semiconductor heterostructures and their application to spintronic devices; applications of bismuth-containing III–V semiconductors in devices; MBE growth and device applications of Ga2O3; Heterovalent semiconductor structures and their device applications; and more.

  • Includes chapters on the fundamentals of MBE
  • Covers new challenging researches in MBE and new technologies 
  • Edited by two pioneers in the field of MBE with contributions from well-known MBE authors including three Al Cho MBE Award winners
  • Part of the Materials for Electronic and Optoelectronic Applications series

Molecular Beam Epitaxy: Materials and Applications for Electronics and Optoelectronics will appeal to graduate students, researchers in academia and industry, and others interested in the area of epitaxial growth.

List of Contributors
xv
Series Preface xix
Preface xxi
PART I Fundamentals of MBE
1(106)
1 History of MBE
3(20)
Tom Foxon
1.1 Introduction
3(1)
1.2 The MBE Process
4(6)
1.3 Controlled n and p Doping
10(1)
1.4 Modified Growth Procedures
10(1)
1.5 Gas-Source MBE
11(1)
1.6 Low-Dimensional Structures
11(2)
1.7 III---V Nitrides, Phosphides, Antimonides and Bismides and Other Materials
13(5)
1.7.1 III-Nitrides
14(1)
1.7.2 III-Phosphides
15(1)
1.7.3 III-Antimonides
15(1)
1.7.4 III-Bismides
15(1)
1.7.5 Highly Mismatched Alloys
16(1)
1.7.6 II-VIs
16(1)
1.7.7 IV-VIs
17(1)
1.7.8 SiGe
17(1)
1.7.9 2D Materials
18(1)
1.8 Early MBE-Grown Devices
18(1)
1.9 Summary
18(1)
Acknowledgments
18(1)
References
19(4)
2 General Description of MBE
23(18)
Yoshiji Horikoshi
2.1 Introduction
23(1)
2.2 High-Vacuum Chamber System
24(1)
2.3 Atomic and Molecular Beam Sources
25(3)
2.4 Measurement of MBE Growth Parameters
28(3)
2.4.1 Measurement of Background Atmospheric Conditions
29(1)
2.4.2 Measurement of Substrate Temperature
29(1)
2.4.3 Measurement of Atomic/Molecular Beam Intensity
30(1)
2.5 Surface Characterization Tools for MBE Growth
31(6)
2.5.1 Reflection High-Energy Electron Diffraction
33(2)
2.5.2 Optical Diagnostic Methods
35(2)
2.6 Summary
37(1)
Acknowledgments
37(1)
References
38(3)
3 Migration-Enhanced Epitaxy and its Application
41(16)
Yoshiji Horikoshi
3.1 Introduction
41(1)
3.2 Toward Atomically Flat Surfaces in MBE
42(2)
3.3 Principle of MEE
44(4)
3.4 Growth of GaAs by MEE
48(1)
3.5 Incommensurate Deposition and Migration of Ga Atoms
49(1)
3.6 Application of MEE Deposition Sequence to Surface Research
50(1)
3.7 Application of MEE to Selective Area Epitaxy
51(3)
3.8 Summary
54(1)
Acknowledgments
54(1)
References
55(2)
4 Nanostructure Formation Process of MBE
57(16)
Koichi Yamaguchi
4.1 Introduction
57(1)
4.2 Growth of Quantum Wells
58(2)
4.3 Growth of Quantum Wires and Nanowires
60(4)
4.4 Growth of Quantum Dots
64(7)
4.5 Conclusion
71(1)
References
72(1)
5 Ammonia Molecular Beam Epitaxy of Ill-Nitrides
73(18)
Micha N. Fireman
James S. Speck
5.1 Introduction
73(1)
5.2 Ill-Nitride Fundamentals
74(3)
5.3 Ammonia Molecular Beam Epitaxy
77(5)
5.4 Ternary Nitride Alloys and Doping
82(4)
5.5 Conclusions
86(1)
References
86(5)
6 Mechanism of Selective Area Growth by MBE
91(16)
Katsumi Kishino
6.1 Background
91(1)
6.2 Growth Parameters for Ti Mask SAG
92(2)
6.3 Initial Growth of Nanocolumns
94(1)
6.4 Nitrogen Flow Rate Dependence of SAG
95(1)
6.5 Diffusion Length of Ga Adatoms
96(2)
6.6 Fine Control of Nanocolumn Arrays by SAG
98(2)
6.7 Controlled Columnar Crystals from Micrometer to Nanometer Size
100(1)
6.8 Nanotemplate SAG of AlGaN Nanocolumns
101(2)
6.9 Conclusions and Outlook
103(1)
References
104(3)
PART II MBE Technology for Electronic Devices Application
107(42)
7 MBE of III-Nitride Semiconductors for Electronic Devices
109(26)
Rolf J. Aidam
O. Ambacher
E. Diwo
B.-J. Godejohann
L. Kirste
T. Lint
R. Quay
P. Waltereit
7.1 Introduction
109(1)
7.2 MBE Growth Techniques
110(8)
7.2.1 Plasma-Assisted MBE PAMBE
110(4)
7.2.2 Ammonia MBE
114(3)
7.2.3 Doping
117(1)
7.3 AlGaN/GaN High Electron Mobility Transistors on SiC Substrate
118(5)
7.3.1 PAMBE
118(3)
7.3.2 Ammonia MBE
121(2)
7.4 AlGaN/GaN High Electron Mobility Transistors on Si Substrate
123(2)
7.4.1 PAMBE
123(1)
7.4.2 Ammonia MBE
124(1)
7.5 HEMTs with Thin Barrier Layers for High-Frequency Applications
125(5)
7.5.1 AIN/GaN Heterostructures
126(1)
7.5.2 Lattice-Matched AlInN and AlGaInN Barrier Layers
127(3)
7.6 Vertical Devices
130(2)
7.6.1 p-n Junction
130(1)
7.6.2 Current Aperture Vertical Electron Transistors
131(1)
References
132(3)
8 Molecular Beam Epitaxy for Steep Switching Tunnel FETs
135(14)
Salim El Kazzi
8.1 Introduction
135(1)
8.2 TFET Working Principle
136(1)
8.3 III-V Heterostructure for TFETs
136(2)
8.4 MBE for Beyond CMOS Technologies
138(1)
8.5 Doping
139(3)
8.6 Tunneling Interface Engineering
142(1)
8.7 MBE for III-V TFET Integration
143(3)
8.8 Conclusions and Perspectives
146(1)
Acknowledgments
146(1)
References
147(2)
PART III MBE for Optoelectronic Devices
149(130)
9 Applications of IH-V Semiconductor Quantum Dots in Optoelectronic Devices
151(18)
Kouichi Akahane
Yoshiaki Nakata
9.1 Introduction: Self-assembled Quantum Dots
151(1)
9.2 Lasers Based on InAs Quantum Dots Grown on GaAs Substrates
152(6)
9.2.1 S-K Growth Mode of InAs Islands on GaAs
152(3)
9.2.2 Emission Wavelength Control by the Buried Strain Relaxation Layer
155(2)
9.2.3 InAs Quantum-Dot Lasers
157(1)
9.3 InAs QD Optical Device Operating at Telecom Band (1.55 um)
158(6)
9.4 Recent Progress in QD Lasers
164(1)
9.5 Summary
165(1)
References
165(4)
10 Applications of III-V Semiconductors for Mid-infrared Lasers
169(6)
Yuichi Kawamura
10.1 Introduction
169(1)
10.2 GaSb-Based Lasers
170(1)
10.3 InP-Based Lasers
170(3)
10.4 InAs-Based Lasers
173(1)
10.5 Conclusion
174(1)
References
174(1)
11 Molecular Beam Epitaxial Growth of Terahertz Quantum Cascade Lasers
175(16)
Harvey E. Beere
David A. Ritchie
11.1 Introduction
175(4)
11.2 Epitaxial Challenges
179(10)
11.2.1 Growth Rate Calibration
179(5)
11.2.2 Growth Rate Stability
184(2)
11.2.3 Growth Rate Uniformity
186(1)
11.2.4 Doping Accuracy
187(2)
References
189(2)
12 MBE of Ill-Nitride Heterostructures for Optoelectronic Devices
191(20)
C. Skierbiszewski
G. Muziol
H. Turski
M. Siekacz
K. Nowakowski-Szkudlarek
A. Feduniewicz-Zmuda
P. Wolny
M. Sawicka
12.1 Introduction
191(1)
12.2 Low-Temperature Growth of Nitrides by PAMB E
192(4)
12.3 Applications of PAMBE in Growth of Nitride Laser Diodes
196(9)
12.3.1 Enhancement of Optical Confinement Factor by InGaN Waveguide
197(3)
12.3.2 Elimination of Light Leakage to GaN Substrate Using a Thick InGaN Waveguide
200(2)
12.3.3 Long-Wavelength Laser Diodes by PAMBE
202(1)
12.3.4 High-Power Blue Laser Diodes by PAMBE
203(1)
12.3.5 Lifetime of PAMBE Laser Diodes
203(2)
12.4 New Concepts of LDs with Tunnel Junctions
205(1)
12.5 Summary
206(1)
Acknowledgments
207(1)
References
207(4)
13 IH-Nitride Quantum Dots for Optoelectronic Devices
211(22)
Pallab Bhattacharya
Thomas Frost
Shafat Jahangir
Saniya Deshpande
Arnab Hazari
13.1 Introduction
211(1)
13.2 Molecular Beam Epitaxy of InGaN/GaN Self-organized Quantum Dots
212(8)
13.2.1 Optical Properties
217(3)
13.3 Quantum Dot Wavelength Converter White Light-Emitting Diode
220(3)
13.4 Quantum Dot Lasers
223(6)
13.4.1 Epitaxy of InA1N and QD Laser Heterostructure
223(2)
13.4.2 Steady-State Laser Characteristics
225(2)
13.4.3 Small-Signal Modulation Characteristics
227(2)
13.5 Summary and Future Prospects
229(1)
References
230(3)
14 Molecular-Beam Epitaxy of Antimonides for Optoelectronic Devices
233(14)
Eric Tournie
14.1 Introduction
233(2)
14.2 Epitaxy of Antimonides: A Brief Historical Survey
235(1)
14.3 Molecular-Beam Epitaxy of Antimonide
236(7)
14.3.1 Substrate Preparation
236(1)
14.3.2 Doping of Ill-Sb Compounds
237(2)
14.3.3 Control of Alloy Compositions
239(2)
14.3.4 No-Common-Atom Interfaces
241(1)
14.3.5 Growth of III-Sbs on Highly Mismatched Substrates
241(2)
14.4 Outlook
243(1)
Acknowledgments
244(1)
References
244(3)
15 III-V Semiconductors for Infrared Detectors
247(18)
P. C. Klipstein
15.1 Introduction
247(4)
15.2 InAsSb XBn Detectors
251(4)
15.3 T2SL XBp Detectors
255(7)
15.4 Conclusion
262(1)
Acknowledgments
262(1)
References
262(3)
16 MBE of III-V Semiconductors for Solar Cells
265(14)
Takeyoshi Sugaya
16.1 Introduction
265(1)
16.2 InGaP Solar Cells
266(2)
16.3 InGaAsP Solar Cells Lattice-Matched to GaAs
268(3)
16.4 InGaAsP Solar Cells Lattice-Matched to InP
271(1)
16.5 Growth of Tunnel Junctions for Multi-Junction Solar Cells
272(5)
16.6 Summary
277(1)
References
277(2)
PART IV Magnetic Semiconductors and Spintronics Devices
279
17 III-V-Based Magnetic Semiconductors and Spintronics Devices
281(18)
Hiro Munekata
17.1 Introduction
281(1)
17.2 Hole-Mediated Ferromagnetism
282(3)
17.3 Molecular Beam Epitaxy and Materials Characterization
285(8)
17.4 Studies in View of Spintronics Applications
293(3)
17.5 Conclusions and Prospects
296(1)
Acknowledgments
296(1)
References
296(3)
18 IH-Nitride Dilute Magnetic Semiconductors
299(16)
Yi-Kai Zhou
Hajime Asahi
18.1 Introduction
299(1)
18.2 Transition-Metal-Doped GaN
300(3)
18.2.1 GaMnN
300(1)
18.2.2 GaCrN
301(2)
18.3 Rare-Earth-Doped Ill-Nitrides
303(6)
18.3.1 GaGdN and InGaGdN
303(5)
18.3.2 GaDyN
308(1)
18.3.3 Other RE-Doped Ill-Nitrides
308(1)
18.4 Device Applications
309(3)
18.4.1 TMR in GaCrN-Based Trilayer Structures
309(1)
18.4.2 Interlayer Interaction Between GaDyN Layers
310(1)
18.4.3 CP-LD and Other Spintronic Device Applications
310(2)
18.5 Summary
312(1)
References
312(3)
19 MBE Growth, Magnetic and Magneto-optical Properties of II-VI DMSs
315(14)
Shinji Kuroda
19.1 II-VI DMSs Doped with Mn
315(4)
19.2 II-VI DMSs Doped with Cr and Fe
319(4)
19.3 ZnO-Based DMSs
323(2)
References
325(4)
20 Ferromagnet/Semiconductor Heterostructures and Nanostructures Grown by Molecular Beam Epitaxy
329(20)
Masaaki Tanaka
20.1 Introduction
329(1)
20.2 MnAs on GaAs(OOl) and Si(001) Substrates
330(7)
20.2.1 Ferromagnetic MnAs Thin Films Grown on GaAs(001) Substrates
330(4)
20.2.2 Ferromagnetic MnAs Thin Films Grown on Si(001) Substrates
334(3)
20.3 GaAs:MnAs Granular Materials: Magnetoresistive Effects and Related Devices
337(8)
20.3.1 Growth and Structure of MnAs Nanoparticles Embedded in GaAs
337(1)
20.3.2 MnAs Nanoparticles as a Spin Injector and Spin Detector
338(4)
20.3.3 AlAs Tunnel Barrier Thickness Dependence of TMR Properties
342(3)
20.4 Summary
345(1)
Acknowledgments
345(1)
References
346(3)
21 MBE Growth of Ge-Based Diluted Magnetic Semiconductors
349
Tianxiao Nie
Jianshi Tang
Kang L. Wang
21.1 Introduction
349(2)
21.2 MBE Growth of Mnx Ge1-x Thin Film and Nanostructures
351(4)
21.2.1 Growth of MnxGe1-x Thin Film and QDs
351(2)
21.2.2 Growth of MnxGe1-x Nanodisks and Nanomeshes
353(2)
21.3 Magnetic Properties of MnxGe1-x Thin Films and Nanostructures
355(1)
21.3.1 Magnetic Properties of MnxGe1-x Thin Films and QDs
355(2)
21.3.2 Magnetic Property of MnxGe1-x Nanodisks and Nanomeshes
357(5)
21.4 Electric-Field-Controlled Ferromagnetism and Magnetoresistance
359(3)
21.5 Conclusion
362(1)
Acknowledgments
362(1)
References
363
Series Editors

Arthur Willoughby University of Southampton, Southampton, UK

Peter Capper formerly of SELEX Galileo Infrared Ltd, Southampton, UK

Safa Kasap University of Saskatchewan, Saskatoon, Canada

Edited by Hajime Asahi Emeritus Professor, Osaka University, Japan

Yoshiji Horikoshi Emeritus Professor, Waseda University, Tokyo, Japan