|
|
xv | |
Series Preface |
|
xix | |
Preface |
|
xxi | |
|
PART I Fundamentals of MBE |
|
|
1 | (106) |
|
|
3 | (20) |
|
|
|
3 | (1) |
|
|
4 | (6) |
|
1.3 Controlled n and p Doping |
|
|
10 | (1) |
|
1.4 Modified Growth Procedures |
|
|
10 | (1) |
|
|
11 | (1) |
|
1.6 Low-Dimensional Structures |
|
|
11 | (2) |
|
1.7 III---V Nitrides, Phosphides, Antimonides and Bismides and Other Materials |
|
|
13 | (5) |
|
|
14 | (1) |
|
|
15 | (1) |
|
|
15 | (1) |
|
|
15 | (1) |
|
1.7.5 Highly Mismatched Alloys |
|
|
16 | (1) |
|
|
16 | (1) |
|
|
17 | (1) |
|
|
17 | (1) |
|
|
18 | (1) |
|
1.8 Early MBE-Grown Devices |
|
|
18 | (1) |
|
|
18 | (1) |
|
|
18 | (1) |
|
|
19 | (4) |
|
2 General Description of MBE |
|
|
23 | (18) |
|
|
|
23 | (1) |
|
2.2 High-Vacuum Chamber System |
|
|
24 | (1) |
|
2.3 Atomic and Molecular Beam Sources |
|
|
25 | (3) |
|
2.4 Measurement of MBE Growth Parameters |
|
|
28 | (3) |
|
2.4.1 Measurement of Background Atmospheric Conditions |
|
|
29 | (1) |
|
2.4.2 Measurement of Substrate Temperature |
|
|
29 | (1) |
|
2.4.3 Measurement of Atomic/Molecular Beam Intensity |
|
|
30 | (1) |
|
2.5 Surface Characterization Tools for MBE Growth |
|
|
31 | (6) |
|
2.5.1 Reflection High-Energy Electron Diffraction |
|
|
33 | (2) |
|
2.5.2 Optical Diagnostic Methods |
|
|
35 | (2) |
|
|
37 | (1) |
|
|
37 | (1) |
|
|
38 | (3) |
|
3 Migration-Enhanced Epitaxy and its Application |
|
|
41 | (16) |
|
|
|
41 | (1) |
|
3.2 Toward Atomically Flat Surfaces in MBE |
|
|
42 | (2) |
|
|
44 | (4) |
|
3.4 Growth of GaAs by MEE |
|
|
48 | (1) |
|
3.5 Incommensurate Deposition and Migration of Ga Atoms |
|
|
49 | (1) |
|
3.6 Application of MEE Deposition Sequence to Surface Research |
|
|
50 | (1) |
|
3.7 Application of MEE to Selective Area Epitaxy |
|
|
51 | (3) |
|
|
54 | (1) |
|
|
54 | (1) |
|
|
55 | (2) |
|
4 Nanostructure Formation Process of MBE |
|
|
57 | (16) |
|
|
|
57 | (1) |
|
4.2 Growth of Quantum Wells |
|
|
58 | (2) |
|
4.3 Growth of Quantum Wires and Nanowires |
|
|
60 | (4) |
|
4.4 Growth of Quantum Dots |
|
|
64 | (7) |
|
|
71 | (1) |
|
|
72 | (1) |
|
5 Ammonia Molecular Beam Epitaxy of Ill-Nitrides |
|
|
73 | (18) |
|
|
|
|
73 | (1) |
|
5.2 Ill-Nitride Fundamentals |
|
|
74 | (3) |
|
5.3 Ammonia Molecular Beam Epitaxy |
|
|
77 | (5) |
|
5.4 Ternary Nitride Alloys and Doping |
|
|
82 | (4) |
|
|
86 | (1) |
|
|
86 | (5) |
|
6 Mechanism of Selective Area Growth by MBE |
|
|
91 | (16) |
|
|
|
91 | (1) |
|
6.2 Growth Parameters for Ti Mask SAG |
|
|
92 | (2) |
|
6.3 Initial Growth of Nanocolumns |
|
|
94 | (1) |
|
6.4 Nitrogen Flow Rate Dependence of SAG |
|
|
95 | (1) |
|
6.5 Diffusion Length of Ga Adatoms |
|
|
96 | (2) |
|
6.6 Fine Control of Nanocolumn Arrays by SAG |
|
|
98 | (2) |
|
6.7 Controlled Columnar Crystals from Micrometer to Nanometer Size |
|
|
100 | (1) |
|
6.8 Nanotemplate SAG of AlGaN Nanocolumns |
|
|
101 | (2) |
|
6.9 Conclusions and Outlook |
|
|
103 | (1) |
|
|
104 | (3) |
|
PART II MBE Technology for Electronic Devices Application |
|
|
107 | (42) |
|
7 MBE of III-Nitride Semiconductors for Electronic Devices |
|
|
109 | (26) |
|
|
|
|
|
|
|
|
|
|
109 | (1) |
|
7.2 MBE Growth Techniques |
|
|
110 | (8) |
|
7.2.1 Plasma-Assisted MBE PAMBE |
|
|
110 | (4) |
|
|
114 | (3) |
|
|
117 | (1) |
|
7.3 AlGaN/GaN High Electron Mobility Transistors on SiC Substrate |
|
|
118 | (5) |
|
|
118 | (3) |
|
|
121 | (2) |
|
7.4 AlGaN/GaN High Electron Mobility Transistors on Si Substrate |
|
|
123 | (2) |
|
|
123 | (1) |
|
|
124 | (1) |
|
7.5 HEMTs with Thin Barrier Layers for High-Frequency Applications |
|
|
125 | (5) |
|
7.5.1 AIN/GaN Heterostructures |
|
|
126 | (1) |
|
7.5.2 Lattice-Matched AlInN and AlGaInN Barrier Layers |
|
|
127 | (3) |
|
|
130 | (2) |
|
|
130 | (1) |
|
7.6.2 Current Aperture Vertical Electron Transistors |
|
|
131 | (1) |
|
|
132 | (3) |
|
8 Molecular Beam Epitaxy for Steep Switching Tunnel FETs |
|
|
135 | (14) |
|
|
|
135 | (1) |
|
8.2 TFET Working Principle |
|
|
136 | (1) |
|
8.3 III-V Heterostructure for TFETs |
|
|
136 | (2) |
|
8.4 MBE for Beyond CMOS Technologies |
|
|
138 | (1) |
|
|
139 | (3) |
|
8.6 Tunneling Interface Engineering |
|
|
142 | (1) |
|
8.7 MBE for III-V TFET Integration |
|
|
143 | (3) |
|
8.8 Conclusions and Perspectives |
|
|
146 | (1) |
|
|
146 | (1) |
|
|
147 | (2) |
|
PART III MBE for Optoelectronic Devices |
|
|
149 | (130) |
|
9 Applications of IH-V Semiconductor Quantum Dots in Optoelectronic Devices |
|
|
151 | (18) |
|
|
|
9.1 Introduction: Self-assembled Quantum Dots |
|
|
151 | (1) |
|
9.2 Lasers Based on InAs Quantum Dots Grown on GaAs Substrates |
|
|
152 | (6) |
|
9.2.1 S-K Growth Mode of InAs Islands on GaAs |
|
|
152 | (3) |
|
9.2.2 Emission Wavelength Control by the Buried Strain Relaxation Layer |
|
|
155 | (2) |
|
9.2.3 InAs Quantum-Dot Lasers |
|
|
157 | (1) |
|
9.3 InAs QD Optical Device Operating at Telecom Band (1.55 um) |
|
|
158 | (6) |
|
9.4 Recent Progress in QD Lasers |
|
|
164 | (1) |
|
|
165 | (1) |
|
|
165 | (4) |
|
10 Applications of III-V Semiconductors for Mid-infrared Lasers |
|
|
169 | (6) |
|
|
|
169 | (1) |
|
|
170 | (1) |
|
|
170 | (3) |
|
|
173 | (1) |
|
|
174 | (1) |
|
|
174 | (1) |
|
11 Molecular Beam Epitaxial Growth of Terahertz Quantum Cascade Lasers |
|
|
175 | (16) |
|
|
|
|
175 | (4) |
|
11.2 Epitaxial Challenges |
|
|
179 | (10) |
|
11.2.1 Growth Rate Calibration |
|
|
179 | (5) |
|
11.2.2 Growth Rate Stability |
|
|
184 | (2) |
|
11.2.3 Growth Rate Uniformity |
|
|
186 | (1) |
|
|
187 | (2) |
|
|
189 | (2) |
|
12 MBE of Ill-Nitride Heterostructures for Optoelectronic Devices |
|
|
191 | (20) |
|
|
|
|
|
|
|
|
|
|
191 | (1) |
|
12.2 Low-Temperature Growth of Nitrides by PAMB E |
|
|
192 | (4) |
|
12.3 Applications of PAMBE in Growth of Nitride Laser Diodes |
|
|
196 | (9) |
|
12.3.1 Enhancement of Optical Confinement Factor by InGaN Waveguide |
|
|
197 | (3) |
|
12.3.2 Elimination of Light Leakage to GaN Substrate Using a Thick InGaN Waveguide |
|
|
200 | (2) |
|
12.3.3 Long-Wavelength Laser Diodes by PAMBE |
|
|
202 | (1) |
|
12.3.4 High-Power Blue Laser Diodes by PAMBE |
|
|
203 | (1) |
|
12.3.5 Lifetime of PAMBE Laser Diodes |
|
|
203 | (2) |
|
12.4 New Concepts of LDs with Tunnel Junctions |
|
|
205 | (1) |
|
|
206 | (1) |
|
|
207 | (1) |
|
|
207 | (4) |
|
13 IH-Nitride Quantum Dots for Optoelectronic Devices |
|
|
211 | (22) |
|
|
|
|
|
|
|
211 | (1) |
|
13.2 Molecular Beam Epitaxy of InGaN/GaN Self-organized Quantum Dots |
|
|
212 | (8) |
|
13.2.1 Optical Properties |
|
|
217 | (3) |
|
13.3 Quantum Dot Wavelength Converter White Light-Emitting Diode |
|
|
220 | (3) |
|
|
223 | (6) |
|
13.4.1 Epitaxy of InA1N and QD Laser Heterostructure |
|
|
223 | (2) |
|
13.4.2 Steady-State Laser Characteristics |
|
|
225 | (2) |
|
13.4.3 Small-Signal Modulation Characteristics |
|
|
227 | (2) |
|
13.5 Summary and Future Prospects |
|
|
229 | (1) |
|
|
230 | (3) |
|
14 Molecular-Beam Epitaxy of Antimonides for Optoelectronic Devices |
|
|
233 | (14) |
|
|
|
233 | (2) |
|
14.2 Epitaxy of Antimonides: A Brief Historical Survey |
|
|
235 | (1) |
|
14.3 Molecular-Beam Epitaxy of Antimonide |
|
|
236 | (7) |
|
14.3.1 Substrate Preparation |
|
|
236 | (1) |
|
14.3.2 Doping of Ill-Sb Compounds |
|
|
237 | (2) |
|
14.3.3 Control of Alloy Compositions |
|
|
239 | (2) |
|
14.3.4 No-Common-Atom Interfaces |
|
|
241 | (1) |
|
14.3.5 Growth of III-Sbs on Highly Mismatched Substrates |
|
|
241 | (2) |
|
|
243 | (1) |
|
|
244 | (1) |
|
|
244 | (3) |
|
15 III-V Semiconductors for Infrared Detectors |
|
|
247 | (18) |
|
|
|
247 | (4) |
|
15.2 InAsSb XBn Detectors |
|
|
251 | (4) |
|
|
255 | (7) |
|
|
262 | (1) |
|
|
262 | (1) |
|
|
262 | (3) |
|
16 MBE of III-V Semiconductors for Solar Cells |
|
|
265 | (14) |
|
|
|
265 | (1) |
|
|
266 | (2) |
|
16.3 InGaAsP Solar Cells Lattice-Matched to GaAs |
|
|
268 | (3) |
|
16.4 InGaAsP Solar Cells Lattice-Matched to InP |
|
|
271 | (1) |
|
16.5 Growth of Tunnel Junctions for Multi-Junction Solar Cells |
|
|
272 | (5) |
|
|
277 | (1) |
|
|
277 | (2) |
|
PART IV Magnetic Semiconductors and Spintronics Devices |
|
|
279 | |
|
17 III-V-Based Magnetic Semiconductors and Spintronics Devices |
|
|
281 | (18) |
|
|
|
281 | (1) |
|
17.2 Hole-Mediated Ferromagnetism |
|
|
282 | (3) |
|
17.3 Molecular Beam Epitaxy and Materials Characterization |
|
|
285 | (8) |
|
17.4 Studies in View of Spintronics Applications |
|
|
293 | (3) |
|
17.5 Conclusions and Prospects |
|
|
296 | (1) |
|
|
296 | (1) |
|
|
296 | (3) |
|
18 IH-Nitride Dilute Magnetic Semiconductors |
|
|
299 | (16) |
|
|
|
|
299 | (1) |
|
18.2 Transition-Metal-Doped GaN |
|
|
300 | (3) |
|
|
300 | (1) |
|
|
301 | (2) |
|
18.3 Rare-Earth-Doped Ill-Nitrides |
|
|
303 | (6) |
|
|
303 | (5) |
|
|
308 | (1) |
|
18.3.3 Other RE-Doped Ill-Nitrides |
|
|
308 | (1) |
|
|
309 | (3) |
|
18.4.1 TMR in GaCrN-Based Trilayer Structures |
|
|
309 | (1) |
|
18.4.2 Interlayer Interaction Between GaDyN Layers |
|
|
310 | (1) |
|
18.4.3 CP-LD and Other Spintronic Device Applications |
|
|
310 | (2) |
|
|
312 | (1) |
|
|
312 | (3) |
|
19 MBE Growth, Magnetic and Magneto-optical Properties of II-VI DMSs |
|
|
315 | (14) |
|
|
19.1 II-VI DMSs Doped with Mn |
|
|
315 | (4) |
|
19.2 II-VI DMSs Doped with Cr and Fe |
|
|
319 | (4) |
|
|
323 | (2) |
|
|
325 | (4) |
|
20 Ferromagnet/Semiconductor Heterostructures and Nanostructures Grown by Molecular Beam Epitaxy |
|
|
329 | (20) |
|
|
|
329 | (1) |
|
20.2 MnAs on GaAs(OOl) and Si(001) Substrates |
|
|
330 | (7) |
|
20.2.1 Ferromagnetic MnAs Thin Films Grown on GaAs(001) Substrates |
|
|
330 | (4) |
|
20.2.2 Ferromagnetic MnAs Thin Films Grown on Si(001) Substrates |
|
|
334 | (3) |
|
20.3 GaAs:MnAs Granular Materials: Magnetoresistive Effects and Related Devices |
|
|
337 | (8) |
|
20.3.1 Growth and Structure of MnAs Nanoparticles Embedded in GaAs |
|
|
337 | (1) |
|
20.3.2 MnAs Nanoparticles as a Spin Injector and Spin Detector |
|
|
338 | (4) |
|
20.3.3 AlAs Tunnel Barrier Thickness Dependence of TMR Properties |
|
|
342 | (3) |
|
|
345 | (1) |
|
|
345 | (1) |
|
|
346 | (3) |
|
21 MBE Growth of Ge-Based Diluted Magnetic Semiconductors |
|
|
349 | |
|
|
|
|
|
349 | (2) |
|
21.2 MBE Growth of Mnx Ge1-x Thin Film and Nanostructures |
|
|
351 | (4) |
|
21.2.1 Growth of MnxGe1-x Thin Film and QDs |
|
|
351 | (2) |
|
21.2.2 Growth of MnxGe1-x Nanodisks and Nanomeshes |
|
|
353 | (2) |
|
21.3 Magnetic Properties of MnxGe1-x Thin Films and Nanostructures |
|
|
355 | (1) |
|
21.3.1 Magnetic Properties of MnxGe1-x Thin Films and QDs |
|
|
355 | (2) |
|
21.3.2 Magnetic Property of MnxGe1-x Nanodisks and Nanomeshes |
|
|
357 | (5) |
|
21.4 Electric-Field-Controlled Ferromagnetism and Magnetoresistance |
|
|
359 | (3) |
|
|
362 | (1) |
|
|
362 | (1) |
|
|
363 | |