Contributors |
|
xiii | |
Preface |
|
xv | |
|
Chapter 1 Introduction to Molecular Dynamics |
|
|
1 | (38) |
|
|
|
|
|
1 | (1) |
|
1.2 Monte Carlo Simulation |
|
|
2 | (1) |
|
|
3 | (1) |
|
1.4 Dissipative Particle Dynamics |
|
|
3 | (1) |
|
1.5 Lattice Boltzmann Method |
|
|
4 | (1) |
|
|
4 | (21) |
|
|
4 | (7) |
|
|
11 | (5) |
|
|
16 | (2) |
|
|
18 | (4) |
|
1.6.5 Boundary Conditions |
|
|
22 | (3) |
|
1.7 Molecular Dynamics Methodology |
|
|
25 | (10) |
|
|
27 | (6) |
|
|
33 | (2) |
|
1.8 Molecular Potential Energy Surface |
|
|
35 | (4) |
|
|
37 | (2) |
|
Chapter 2 Overview of BIOVIA Materials Studio, LAMMPS, and CROMACS |
|
|
39 | (1) |
|
Chapter 2.1 Overview of BIOVIA Materials Studio |
|
|
39 | (17) |
|
|
|
|
|
40 | (3) |
|
2.1.2 Simulation Strategy |
|
|
43 | (5) |
|
|
48 | (7) |
|
|
55 | (1) |
|
Chapter 2.2 Overview of LAMMPS |
|
|
56 | (14) |
|
|
|
2.2.1 Introduction to LAMMPS |
|
|
56 | (1) |
|
2.2.2 Anatomy of a Nanomechanical System |
|
|
56 | (1) |
|
2.2.3 Internal Working of LAMMPS Calculations |
|
|
56 | (1) |
|
2.2.4 Methodology of MD Simulation Using LAMMPS |
|
|
57 | (1) |
|
2.2.5 Development of the Unit Cell Model of Polymeric Nanocomposite |
|
|
57 | (3) |
|
2.2.6 Setting the Conditions of Simulation |
|
|
60 | (1) |
|
2.2.7 Structural Properties |
|
|
61 | (1) |
|
2.2.8 Stress-Strain Behavior |
|
|
61 | (2) |
|
|
63 | (1) |
|
|
64 | (3) |
|
2.2.11 LAMMPS Output File |
|
|
67 | (2) |
|
|
69 | (1) |
|
Chapter 2.3 Overview of GROMACS |
|
|
70 | (31) |
|
|
|
70 | (2) |
|
2.3.2 Working Principle of GROMACS |
|
|
72 | (1) |
|
2.3.3 Computational Chemistry and Molecular Modeling |
|
|
73 | (1) |
|
2.3.3.1 Molecular Dynamics Simulations |
|
|
73 | (1) |
|
2.3.3.2 Molecular Dynamics Approximation |
|
|
74 | (2) |
|
2.3.3.3 Energy Minimization |
|
|
76 | (1) |
|
|
76 | (1) |
|
2.3.4.1 Periodic Boundary Conditions |
|
|
77 | (1) |
|
2.3.4.2 The Group Concept |
|
|
77 | (2) |
|
|
79 | (1) |
|
2.3.5.1 Initial Conditions |
|
|
79 | (2) |
|
2.3.5.2 Neighbour Searching |
|
|
81 | (1) |
|
2.3.5.3 Pair Lists Generation |
|
|
81 | (1) |
|
2.3.5.4 Cut-Off Schemes: Group Versus Verlet |
|
|
81 | (1) |
|
2.3.5.5 Energy Drift and Pair-List Buffering |
|
|
82 | (1) |
|
2.3.5.6 Cut-Off Artifacts and Switched Interactions |
|
|
83 | (1) |
|
|
84 | (1) |
|
|
84 | (1) |
|
|
84 | (1) |
|
|
84 | (1) |
|
2.3.6.2 Kinetic Energy and Temperature |
|
|
85 | (1) |
|
2.3.6.3 Pressure and Virial |
|
|
85 | (1) |
|
2.3.7 The Leap-Frog Integrator |
|
|
86 | (1) |
|
2.3.8 The Velocity Verlet Integrator |
|
|
86 | (1) |
|
2.3.9 Reversible Integrators: The Trotter Decomposition |
|
|
87 | (1) |
|
2.3.10 Temperature Coupling |
|
|
88 | (1) |
|
2.3.10.1 Berendsen Temperature Coupling |
|
|
88 | (1) |
|
2.3.10.2 Velocity-Rescaling Temperature Coupling |
|
|
89 | (1) |
|
2.3.10.3 Andersen Thermostat |
|
|
89 | (1) |
|
2.3.10.4 Nose-Hoover Temperature Coupling |
|
|
89 | (3) |
|
2.3.10.5 Group Temperature Coupling |
|
|
92 | (1) |
|
|
92 | (1) |
|
2.3.11.1 Berendsen Pressure Coupling |
|
|
92 | (1) |
|
2.3.11.2 Parrinello-Rahman Pressure Coupling |
|
|
93 | (1) |
|
2.3.11.3 Surface-Tension Coupling |
|
|
94 | (1) |
|
2.3.12 The Complete Update Algorithm |
|
|
95 | (1) |
|
|
95 | (1) |
|
2.3.14 Advantage and Functional Characteristics |
|
|
96 | (1) |
|
2.3.15 Application of GROMACS |
|
|
97 | (1) |
|
|
97 | (1) |
|
2.3.15.2 Molecular Modeling of Biomolecules |
|
|
98 | (1) |
|
|
98 | (3) |
|
Chapter 3 Molecular Dynamics Simulation of Metal Matrix Composites Using BIOVIA Materials Studio, LAMMPS, and GROMACS |
|
|
101 | (1) |
|
Chapter 3.1 Prediction of Mechanical Properties of Graphene/Silicon Carbide-Reinforced Aluminum Composites Using BIOVIA Materials Studio |
|
|
101 | (13) |
|
|
|
|
|
|
104 | (4) |
|
3.1.2 Results and Discussion |
|
|
108 | (4) |
|
|
112 | (1) |
|
|
113 | (1) |
|
Chapter 3.2 Prediction of Mechanical Properties of Graphene/Copper Nanolayered Composites Using LAMMPS |
|
|
114 | (11) |
|
|
|
|
|
116 | (2) |
|
3.2.2 Results and Discussion |
|
|
118 | (5) |
|
|
123 | (1) |
|
|
124 | (1) |
|
|
124 | (1) |
|
Chapter 3.3 Molecular Dynamics Simulation of Lithium Metal/Polymer Electrolyte Interracial Properties Using GROMACS |
|
|
125 | (16) |
|
|
|
|
|
127 | (2) |
|
3.3.2 Results and Discussion |
|
|
129 | (9) |
|
|
138 | (1) |
|
|
138 | (3) |
|
Chapter 4 Molecular Dynamics Simulation of Polymer-Matrix Composites Using BIOVIA Materials Studio, LAMMPS, and GROMACS |
|
|
141 | (1) |
|
Chapter 4.1 Molecular Dynamics Simulation of Carbon Nanotubes and Polymer/Carbon Nanotube Composites |
|
|
141 | (47) |
|
|
|
|
|
141 | (1) |
|
|
142 | (1) |
|
4.1.3 Total Potential Energies and Interatomic Forces |
|
|
142 | (2) |
|
4.1.4 Stiffness of SWCNTs |
|
|
144 | (1) |
|
4.1.4.1 Modeling of SWCNTs |
|
|
144 | (1) |
|
4.1.4.2 Geometry Optimization |
|
|
145 | (1) |
|
|
146 | (1) |
|
4.1.4.4 Mechanical Properties |
|
|
147 | (1) |
|
|
148 | (3) |
|
4.1.6 Thermal Conductivity of SWCNTs |
|
|
151 | (3) |
|
4.1.7 Results and Discussion |
|
|
154 | (1) |
|
|
154 | (13) |
|
4.1.7.2 Damping in SWCNTs |
|
|
167 | (2) |
|
4.1.7.3 Thermal Conductivity of SWCNTs |
|
|
169 | (1) |
|
4.1.8 MD Simulation of Polymer/CNT Composites |
|
|
170 | (1) |
|
4.1.8.1 Molecular Model of Polymer Matrix |
|
|
171 | (1) |
|
4.1.8.2 Elastic Moduli of Polymers |
|
|
171 | (1) |
|
4.1.8.3 PmPV/CNT Composite System |
|
|
172 | (3) |
|
4.1.8.4 PMMA/CNT Composite System |
|
|
175 | (4) |
|
4.1.8.5 Damping in Polymer Composites |
|
|
179 | (2) |
|
4.1.8.6 Thermal Conductivity |
|
|
181 | (4) |
|
|
185 | (2) |
|
|
187 | (1) |
|
Chapter 4.2 Molecular Dynamics Simulation of Functionalized SWCNT/Polymer Composites Using LAMMPS |
|
|
188 | (26) |
|
|
|
|
|
188 | (3) |
|
4.2.2 Molecular Dynamics Simulation |
|
|
191 | (1) |
|
4.2.2.1 Molecular Structures |
|
|
191 | (1) |
|
4.2.2.2 Geometry Optimization |
|
|
192 | (2) |
|
|
194 | (1) |
|
4.2.2.4 Mechanical Properties |
|
|
194 | (2) |
|
4.2.2.5 SWCNT/PP Composites |
|
|
196 | (1) |
|
4.2.3 Results and Discussion |
|
|
196 | (15) |
|
|
211 | (2) |
|
|
213 | (1) |
|
Chapter 4.3 Prediction of Tribological Properties of Carbon Nanotube-Reinforced Natural Rubber Composites Using GROMACS |
|
|
214 | (13) |
|
|
|
|
|
214 | (2) |
|
4.3.2 Materials and Methods |
|
|
216 | (2) |
|
4.3.3 Results and Discussion |
|
|
218 | (1) |
|
|
218 | (1) |
|
4.3.3.2 Tribological Properties |
|
|
219 | (2) |
|
|
221 | (1) |
|
4.3.3.4 Friction Stresses |
|
|
222 | (1) |
|
|
223 | (1) |
|
|
224 | (3) |
|
Chapter 5 Molecular Dynamics Simulation of Ceramic Matrix Composites Using BIOVIA Materials Studio, LAMMPS, and GROMACS |
|
|
227 | (1) |
|
Chapter 5.1 Molecular Dynamics Simulation of Carbon Nanotube-Reinforced Silicon Carbide Composites Using BIOVIA Materials Studio |
|
|
227 | (14) |
|
|
|
|
|
227 | (5) |
|
|
232 | (1) |
|
5.1.2.1 Geometry Optimization |
|
|
233 | (2) |
|
|
235 | (1) |
|
5.1.2.3 Mechanical Properties |
|
|
236 | (1) |
|
5.1.3 Results and Discussion |
|
|
237 | (2) |
|
|
239 | (1) |
|
|
240 | (1) |
|
Chapter 5.2 Molecular Dynamics Simulation of Al/Al203 Metal-Ceramic Composite Using LAMMPS |
|
|
241 | (8) |
|
|
|
|
|
245 | (1) |
|
5.2.1.1 Interatomic Potential |
|
|
245 | (1) |
|
5.2.1.2 Al and A1203 Models |
|
|
245 | (2) |
|
5.2.2 Results and Discussion |
|
|
247 | (1) |
|
|
247 | (1) |
|
|
248 | (1) |
|
Chapter 5.3 Molecular Dynamics Simulation of Coaxial Boron Nitride/Carbon Nanotubes Using GROMACS |
|
|
249 | (10) |
|
|
|
|
251 | (1) |
|
5.3.1.1 Interatomic Potential |
|
|
251 | (1) |
|
5.3.1.2 CNT-BNNT Composite |
|
|
252 | (1) |
|
5.3.2 Results and Discussion |
|
|
252 | (5) |
|
|
257 | (1) |
|
|
258 | (1) |
|
Chapter 6 Scripting in Molecular Dynamics |
|
|
259 | (70) |
|
|
|
|
6.1 Working With Scripts in Materials Visualizer |
|
|
259 | (3) |
|
|
259 | (1) |
|
|
260 | (1) |
|
6.1.3 Checking Script Syntax |
|
|
260 | (1) |
|
|
261 | (1) |
|
6.2 Running Scripts on Server |
|
|
262 | (1) |
|
|
262 | (61) |
|
6.3.1 Stress-Strain Script |
|
|
262 | (12) |
|
6.3.2 Script for Thermal Conductivity |
|
|
274 | (23) |
|
6.3.3 Script for Glass-Transition Temperature |
|
|
297 | (26) |
|
|
323 | (5) |
|
6.4.1 Script for Vacancy Formation Energy |
|
|
323 | (2) |
|
6.4.2 Script for Deformation of a Nanowire |
|
|
325 | (3) |
|
|
328 | (1) |
|
|
328 | (1) |
|
Chapter 7 Applications of BIOVIA Materials Studio, LAMMPS, and GROMACS in Various Fields of Science and Engineering |
|
|
329 | (14) |
|
|
|
|
7.1 Applications of BIOVIA Materials Studio |
|
|
329 | (4) |
|
|
330 | (1) |
|
7.1.2 Classical Simulation Tools |
|
|
331 | (1) |
|
7.1.3 Mesoscale Simulation Tools |
|
|
332 | (1) |
|
|
332 | (1) |
|
7.1.5 Analytical and Crystallization Tools |
|
|
333 | (1) |
|
7.2 Applications of LAMMPS |
|
|
333 | (5) |
|
7.3 Applications of GROMACS |
|
|
338 | (5) |
|
|
340 | (3) |
Index |
|
343 | |