Atjaunināt sīkdatņu piekrišanu

E-grāmata: Molecular Interactions: Concepts and Methods

  • Formāts: EPUB+DRM
  • Izdošanas datums: 18-Nov-2019
  • Izdevniecība: John Wiley & Sons Inc
  • Valoda: eng
  • ISBN-13: 9781119319078
Citas grāmatas par šo tēmu:
  • Formāts - EPUB+DRM
  • Cena: 166,50 €*
  • * ši ir gala cena, t.i., netiek piemērotas nekādas papildus atlaides
  • Ielikt grozā
  • Pievienot vēlmju sarakstam
  • Šī e-grāmata paredzēta tikai personīgai lietošanai. E-grāmatas nav iespējams atgriezt un nauda par iegādātajām e-grāmatām netiek atmaksāta.
  • Bibliotēkām
  • Formāts: EPUB+DRM
  • Izdošanas datums: 18-Nov-2019
  • Izdevniecība: John Wiley & Sons Inc
  • Valoda: eng
  • ISBN-13: 9781119319078
Citas grāmatas par šo tēmu:

DRM restrictions

  • Kopēšana (kopēt/ievietot):

    nav atļauts

  • Drukāšana:

    nav atļauts

  • Lietošana:

    Digitālo tiesību pārvaldība (Digital Rights Management (DRM))
    Izdevējs ir piegādājis šo grāmatu šifrētā veidā, kas nozīmē, ka jums ir jāinstalē bezmaksas programmatūra, lai to atbloķētu un lasītu. Lai lasītu šo e-grāmatu, jums ir jāizveido Adobe ID. Vairāk informācijas šeit. E-grāmatu var lasīt un lejupielādēt līdz 6 ierīcēm (vienam lietotājam ar vienu un to pašu Adobe ID).

    Nepieciešamā programmatūra
    Lai lasītu šo e-grāmatu mobilajā ierīcē (tālrunī vai planšetdatorā), jums būs jāinstalē šī bezmaksas lietotne: PocketBook Reader (iOS / Android)

    Lai lejupielādētu un lasītu šo e-grāmatu datorā vai Mac datorā, jums ir nepieciešamid Adobe Digital Editions (šī ir bezmaksas lietotne, kas īpaši izstrādāta e-grāmatām. Tā nav tas pats, kas Adobe Reader, kas, iespējams, jau ir jūsu datorā.)

    Jūs nevarat lasīt šo e-grāmatu, izmantojot Amazon Kindle.

Presenting concepts, theory, and computational approaches, Molecular Interactions covers long, intermediate, and short range interactions of molecules in their ground electronic state, interactions of electronically excited species, interactions of extended systems (such as chains, clusters and surfaces), and interactions in liquids and solids. This modern, comprehensive treatment of intermolecular forces acquaints advanced undergraduate and beginning graduate students as well as researchers with orders of magnitude of properties, useful models, and the theory and computational aspects needed to interpret and predict phenomena.
Preface xi
1 Fundamental Concepts
1(34)
1.1 Molecular Interactions in Nature
2(2)
1.2 Potential Energies for Molecular Interactions
4(5)
1.2.1 The Concept of a Molecular Potential Energy
4(2)
1.2.2 Theoretical Classification of Interaction Potentials
6(1)
1.2.2.1 Small Distances
7(1)
1.2.2.2 Intermediate Distances
8(1)
1.2.2.3 Large Distances
8(1)
1.2.2.4 Very Large Distances
8(1)
1.3 Quantal Treatment and Examples of Molecular Interactions
9(12)
1.4 Long-Range Interactions and Electrical Properties of Molecules
21(3)
1.4.1 Electric Dipole of Molecules
21(1)
1.4.2 Electric Polarizabilities of Molecules
22(1)
1.4.3 Interaction Potentials from Multipoles
23(1)
1.5 Thermodynamic Averages and Intermolecular Forces
24(3)
1.5.1 Properties and Free Energies
24(1)
1.5.2 Polarization in Condensed Matter
25(1)
1.5.3 Pair Distributions and Potential of Mean-Force
26(1)
1.6 Molecular Dynamics and Intermolecular Forces
27(2)
1.6.1 Collisional Cross Sections
27(1)
1.6.2 Spectroscopy of van der Waals Complexes and of Condensed Matter
28(1)
1.7 Experimental Determination and Applications of Interaction Potential Energies
29(6)
1.7.1 Thermodynamics Properties
30(1)
1.7.2 Spectroscopy and Diffraction Properties
30(1)
1.7.3 Molecular Beam and Energy Deposition Properties
30(1)
1.7.4 A Applications of Intermolecular Forces
31(1)
References
31(4)
2 Molecular Properties
35(28)
2.1 Electric Multipoles of Molecules
35(5)
2.1.1 Potential Energy of a Distribution of Charges
35(1)
2.1.2 Cartesian Multipoles
36(1)
2.1.3 Spherical Multipoles
37(1)
2.1.4 Charge Distributions for an Extended System
38(2)
2.2 Energy of a Molecule in an Electric Field
40(3)
2.2.1 Quantal Perturbation Treatment
40(1)
2.2.2 Static Polarizabilities
41(2)
2.3 Dynamical Polarizabilities
43(6)
2.3.1 General Perturbation
43(4)
2.3.2 Periodic Perturbation Field
47(2)
2.4 Susceptibility of an Extended Molecule
49(3)
2.5 Changes of Reference Frame
52(2)
2.6 Multipole Integrals from Symmetry
54(3)
2.7 Approximations and Bounds for Polarizabilities
57(6)
2.7.1 Physical Models
57(1)
2.7.2 Closure Approximation and Sum Rules
58(1)
2.7.3 Upper and Lower Bounds
59(1)
References
60(3)
3 Quantitative Treatment of Intermolecular Forces
63(48)
3.1 Long Range Interaction Energies from Perturbation Theory
64(4)
3.1.1 Interactions in the Ground Electronic States
64(4)
3.1.2 Interactions in Excited Electronic States and in Resonance
68(1)
3.2 Long Range Interaction Energies from Permanent and Induced Multipoles
68(10)
3.2.1 Molecular Electrostatic Potentials
68(2)
3.2.2 The Interaction Potential Energy at Large Distances
70(3)
3.2.3 Electrostatic, Induction, and Dispersion Forces
73(2)
3.2.4 Interacting Atoms and Molecules from Spherical Components of Multipoles
75(1)
3.2.5 Interactions from Charge Densities and their Fourier Components
76(2)
3.3 Atom-Atom, Atom-Molecule, and Molecule-Molecule Long-Range Interactions
78(3)
3.3.1 Example of Li++Ne
78(1)
3.3.2 Interaction of Oriented Molecular Multipoles
79(1)
3.3.3 Example of Li++HF
80(1)
3.4 Calculation of Dispersion Energies
81(6)
3.4.1 Dispersion Energies from Molecular Polarizabilities
81(1)
3.4.2 Combination Rules
82(1)
3.4.3 Upper and Lower Bounds
83(3)
3.4.4 Variational Calculation of Perturbation Terms
86(1)
3.5 Electron Exchange and Penetration Effects at Reduced Distances
87(15)
3.5.1 Quantitative Treatment with Electronic Density Functionals
87(6)
3.5.2 Electronic Rearrangement and Polarization
93(5)
3.5.3 Treatments of Electronic Exchange and Charge Transfer
98(4)
3.6 Spin-orbit Couplings and Retardation Effects
102(1)
3.7 Interactions in Three-Body and Many-Body Systems
103(8)
3.7.1 Three-Body Systems
103(3)
3.7.2 Many-Body Systems
106(1)
References
107(4)
4 Model Potential Functions
111(46)
4.1 Many-Atom Structures
111(3)
4.2 Atom-Atom Potentials
114(5)
4.2.1 Standard Models and Their Relations
114(2)
4.2.2 Combination Rules
116(1)
4.2.3 Very Short-Range Potentials
117(1)
4.2.4 Local Parametrization of Potentials
117(2)
4.3 Atom--Molecule and Molecule--Molecule Potentials
119(8)
4.3.1 Dependences on Orientation Angles
119(5)
4.3.2 Potentials as Functionals of Variable Parameters
124(1)
4.3.3 Hydrogen Bonding
124(1)
4.3.4 Systems with Additive Anisotropic Pair-Interactions
125(1)
4.3.5 Bond Rearrangements
125(2)
4.4 Interactions in Extended (Many-Atom) Systems
127(8)
4.4.1 Interaction Energies in Crystals
127(4)
4.4.2 Interaction Energies in Liquids
131(4)
4.5 Interaction Energies in a Liquid Solution and in Physisorption
135(8)
4.5.1 Potential Energy of a Solute in a Liquid Solution
135(4)
4.5.2 Potential Energies of Atoms and Molecules Adsorbed at Solid Surfaces
139(4)
4.6 Interaction Energies in Large Molecules and in Chemisorption
143(14)
4.6.1 Interaction Energies Among Molecular Fragments
143(2)
4.6.2 Potential Energy Surfaces and Force Fields in Large Molecules
145(3)
4.6.3 Potential Energy Functions of Global Variables Parametrized with Machine Learning Procedures
148(4)
References
152(5)
5 Intermolecular States
157(38)
5.1 Molecular Energies for Fixed Nuclear Positions
158(5)
5.1.1 Reference Frames
158(2)
5.1.2 Energy Density Functionals for Fixed Nuclei
160(2)
5.1.3 Physical Contributions to the Energy Density Functional
162(1)
5.2 General Properties of Potentials
163(6)
5.2.1 The Electrostatic Force Theorem
163(1)
5.2.2 Electrostatic Forces from Approximate Wavefunctions
164(1)
5.2.3 The Example of Hydrogenic Molecules
165(1)
5.2.4 The Virial Theorem
166(2)
5.2.5 Integral Form of the Virial Theorem
168(1)
5.3 Molecular States for Moving Nuclei
169(3)
5.3.1 Expansion in an Electronic Basis Set
169(1)
5.3.2 Matrix Equations for Nuclear Amplitudes in Electronic States
170(2)
5.3.3 The Flux Function and Conservation of Probability
172(1)
5.4 Electronic Representations
172(8)
5.4.1 The Adiabatic Representation
172(1)
5.4.2 Hamiltonian and Momentum Couplings from Approximate Adiabatic Wavefunctions
173(1)
5.4.3 Nonadiabatic Representations
174(1)
5.4.4 The Two-state Case
175(1)
5.4.5 The Fixed-nuclei, Adiabatic, and Condon Approximations
176(4)
5.5 Electronic Rearrangement for Changing Conformations
180(15)
5.5.1 Construction of Molecular Electronic States from Atomic States: Multistate Cases
180(1)
5.5.2 The Noncrossing Rule
181(3)
5.5.3 Crossings in Several Dimensions: Conical Intersections and Seams
184(5)
5.5.4 The Geometrical Phase and Generalizations
189(3)
References
192(3)
6 Many-Electron Treatments
195(60)
6.1 Many-Electron States
195(14)
6.1.1 Electronic Exchange and Charge Transfer
195(3)
6.1.2 Many-Electron Descriptions and Limitations
198(5)
6.1.3 Properties and Electronic Density Matrices
203(2)
6.1.4 Orbital Basis Sets
205(4)
6.2 Supermolecule Methods
209(13)
6.2.1 The Configuration Interaction Procedure for Molecular Potential Energies
209(6)
6.2.2 Perturbation Expansions
215(3)
6.2.3 Coupled-Cluster Expansions
218(4)
6.3 Many-Atom Methods
222(6)
6.3.1 The Generalized Valence-Bond Method
222(3)
6.3.2 Symmetry-Adapted Perturbation Theory
225(3)
6.4 The Density Functional Approach to Intermolecular Forces
228(15)
6.4.1 Functionals for Interacting Closed- and Open-Shell Molecules
228(4)
6.4.2 Electronic Exchange and Correlation from the Adiabatic-Connection Relation
232(6)
6.4.3 Issues with DFT, and the Alternative Optimized Effective Potential Approach
238(5)
6.5 Spin-Orbit Couplings and Relativistic Effects in Molecular Interactions
243(12)
6.5.1 Spin-Orbit Couplings
243(2)
6.5.2 Spin-Orbit Effects on Interaction Energies
245(2)
References
247(8)
7 Interactions Between Two Many-Atom Systems
255(54)
7.1 Long-range Interactions of Large Molecules
255(10)
7.1.1 Interactions from Charge Density Operators
255(3)
7.1.2 Electrostatic, Induction, and Dispersion Interactions
258(2)
7.1.3 Population Analyses of Charge and Polarization Densities
260(2)
7.1.4 Long-range Interactions from Dynamical Susceptibilities
262(3)
7.2 Energetics of a Large Molecule in a Medium
265(7)
7.2.1 Solute-Solvent Interactions
265(3)
7.2.2 Solvation Energetics for Short Solute-Solvent Distances
268(2)
7.2.3 Embedding of a Molecular Fragment and the QM/MM Treatment
270(2)
7.3 Energies from Partitioned Charge Densities
272(9)
7.3.1 Partitioning of Electronic Densities
272(2)
7.3.2 Expansions of Electronic Density Operators
274(3)
7.3.3 Expansion in a Basis Set of Localized Functions
277(2)
7.3.4 Expansion in a Basis Set of Plane Waves
279(2)
7.4 Models of Hydrocarbon Chains and of Excited Dielectrics
281(10)
7.4.1 Two Interacting Saturated Hydrocarbon Compounds: Chains and Cyclic Structures
281(3)
7.4.2 Two Interacting Conjugated Hydrocarbon Chains
284(5)
7.4.3 Electronic Excitations in Condensed Matter
289(2)
7.5 Density Functional Treatments for All Ranges
291(9)
7.5.1 Dispersion-Corrected Density Functional Treatments
291(3)
7.5.2 Long-range Interactions from Nonlocal Functionals
294(3)
7.5.3 Embedding of Atomic Groups with DFT
297(3)
7.6 Artificial Intelligence Learning Methods for Many-Atom Interaction Energies
300(9)
References
303(6)
8 Interaction of Molecules with Surfaces
309(64)
8.1 Interaction of a Molecule with a Solid Surface
309(15)
8.1.1 Interaction Potential Energies at Surfaces
309(5)
8.1.2 Electronic States at Surfaces
314(5)
8.1.3 Electronic Susceptibilities at Surfaces
319(2)
8.1.4 Electronic Susceptibilities for Metals and Semiconductors
321(3)
8.2 Interactions with a Dielectric Surface
324(8)
8.2.1 Long-range Interactions
324(5)
8.2.2 Short and Intermediate Ranges
329(3)
8.3 Continuum Models
332(5)
8.3.1 Summations Over Lattice Cell Units
332(1)
8.3.2 Surface Electric Dipole Layers
333(2)
8.3.3 Adsorbate Monolayers
335(2)
8.4 Nonbonding Interactions at a Metal Surface
337(12)
8.4.1 Electronic Energies for Varying Molecule--Surface Distances
337(4)
8.4.2 Potential Energy Functions and Physisorption Energies
341(6)
8.4.3 Embedding Models for Physisorption
347(2)
8.5 Chemisorption
349(14)
8.5.1 Models of Chemisorption
349(5)
8.5.2 Charge Transfer at a Metal Surface
354(5)
8.5.3 Dissociation and Reactions at a Metal Surface from Density Functionals
359(4)
8.6 Interactions with Biomolecular Surfaces
363(10)
References
367(6)
Index 373
David A. Micha, PhD, is a Professor of Chemistry and Physics at the University of Florida, presently Adjunct and Emeritus, with continuing research activity. His many research interests include molecular interactions and kinetics, and quantum molecular dynamics involving energy transfer, electron transfer, light emission, reactions in gas phase collisions, and also at solid surfaces. His work has been recognized with awards from the Alfred P. Sloan Foundation and the Dreyfus Foundation, and with an Alexander von Humboldt Senior Scientist Award. Dr. Micha has been the organizer of several Pan-American Workshops and is a co-organizer of the "Sanibel Symposium on Theory and Computation for the Molecular and Materials Sciences" at the University of Florida.