Atjaunināt sīkdatņu piekrišanu

Molecular Modeling and Multiscaling Issues for Electronic Material Applications 2012 [Hardback]

Edited by , Edited by , Edited by
  • Formāts: Hardback, 260 pages, height x width: 235x155 mm, weight: 576 g, XII, 260 p., 1 Hardback
  • Izdošanas datums: 29-Dec-2011
  • Izdevniecība: Springer-Verlag New York Inc.
  • ISBN-10: 1461417279
  • ISBN-13: 9781461417279
  • Hardback
  • Cena: 91,53 €*
  • * ši ir gala cena, t.i., netiek piemērotas nekādas papildus atlaides
  • Standarta cena: 107,69 €
  • Ietaupiet 15%
  • Grāmatu piegādes laiks ir 3-4 nedēļas, ja grāmata ir uz vietas izdevniecības noliktavā. Ja izdevējam nepieciešams publicēt jaunu tirāžu, grāmatas piegāde var aizkavēties.
  • Daudzums:
  • Ielikt grozā
  • Piegādes laiks - 4-6 nedēļas
  • Pievienot vēlmju sarakstam
  • Formāts: Hardback, 260 pages, height x width: 235x155 mm, weight: 576 g, XII, 260 p., 1 Hardback
  • Izdošanas datums: 29-Dec-2011
  • Izdevniecība: Springer-Verlag New York Inc.
  • ISBN-10: 1461417279
  • ISBN-13: 9781461417279
Molecular Modeling and Multiscaling Issues for Electronic Material Applications provides a snapshot on the progression of molecular modeling in the electronics industry and how molecular modeling is currently being used to understand material performance to solve relevant issues in this field. This book is intended to introduce the reader to the evolving role of molecular modeling, especially seen through the eyes of the IEEE community involved in material modeling for electronic applications.  Part I presents  the role that quantum mechanics can play in performance prediction, such as properties dependent upon electronic structure, but also shows examples how molecular models may be used in performance diagnostics, especially when chemistry is part of the performance issue.  Part II gives examples of large-scale atomistic methods in material failure and shows several examples of transitioning between grain boundary simulations (on the atomistic level)and large-scale models including an example of the use of quasi-continuum methods that are being used to address multiscaling issues.   Part III is a more specific look at molecular dynamics in the determination of the thermal conductivity of carbon-nanotubes.   Part IV covers the many aspects of molecular modeling needed to understand the relationship between the molecular structure and mechanical performance of materials.   Finally, Part V discusses the transitional topic of multiscale modeling and recent developments to reach the submicronscale using mesoscale models, including examples of direct scaling and parameterization from the atomistic to the coarse-grained particle level.

This book shows how molecular modeling is used to understand materials and solve relevant problems. Coverage includes attempts to reach the atomistic and submicron scales, the relationship between structures and mechanical performance of materials.
Part I Quantum Mechanics and Molecular Methods: Uses for Property Understanding
1 Atomistic Simulations of Microelectronic Materials: Prediction of Mechanical, Thermal, and Electrical Properties
3(22)
V. Eyert
A. Mavromaras
D. Rigby
W. Wolf
M. Christensen
M. Halls
C. Freeman
P. Saxe
E. Wimmer
2 Using Molecular Modeling Trending to Understand Dielectric Susceptibility in Dielectrics for Display Applications
25(14)
Nancy Iwamoto
Ahila Krishnamoorthy
Edward W. Rutter Jr
3 Understanding Cleaner Efficiency for BARC ("Bottom Anti-Reflective Coating") After Plasma Etch in Dual Damascene Structures Through the Practical Use of Molecular Modeling Trends
39(16)
Nancy Iwamoto
Deborah Yellowaga
Amy Larson
Ben Palmer
Teri Baldwin-Hendricks
Part II Large-Scale Atomistic Methods and Scaling Methods to Understand Mechanical Failure in Metals
4 Roles of Grain Boundaries in the Strength of Metals by Using Atomic Simulations
55(22)
Tomotsugu Shimokawa
5 Semi Emprical Low Cycle Fatigue Crack Growth Analysis of Nanostructure Chip-To-Package Copper Interconnect Using Molecular Simulation
77(16)
S. Koh
A. Saxena
W.D. van Driel
G.Q. (Kouchi) Zhang
R. Tummala
Part III Molecular Scale Modeling Uses for Carbon Nanotube Behavior
6 Thermal Conductivity of Carbon Nanotube Under External Mechanical Stresses and Moisture by Molecular Dynamics Simulation
93(8)
H. Fan
K. Zhang
M.M.F. Yuen
7 Influence of Structural Parameters of Carbon Nanotubes on their Thermal Conductivity: Numerical Assessment
101(14)
Bartosz Platek
Tomasz Falat
Jan Felba
Part IV Molecular Methods to Understand Mechanical and Physical Properties
8 The Mechanical Properties Modeling of Nano-Scale Materials by Molecular Dynamics
115(18)
C. Yuan
W.D. van Driel
R. Poelma
G.Q. (Kouchi) Zhang
9 Molecular Design of Self-Assembled Monolayer (SAM) Coupling Agent for Reliable Interfaces by Molecular Dynamics Simulation
133(16)
C.K.Y. Wong
H. Fan
G.Q. (Kouchi) Zhang
M.M.F. Yuen
10 Microelectronics Packaging Materials: Correlating Structure and Property Using Molecular Dynamics Simulations
149(40)
Ole Holck
Bernhard Wunderle
Part V Multiscale Methods and Perspectives
11 Investigation of Interfacial Delamination in Electronic Packages
189(14)
H. Fan
M.M.F. Yuen
12 A Multiscale Approach to Investigate Wettability of Surfaces with Designed Coating
203(10)
E.K.L. Chan
H. Fan
M.M.F. Yuen
13 Glass Transition Analysis of Cross-Linked Polymers: Numerical and Mesoscale Approach
213(18)
Sebastian J. Tesarski
Artur Wymyslowski
14 Investigation of Coarse-Grained Mesoscale Molecular Models for Mechanical Properties Simulation, as Parameterized Through Molecular Modeling
231(20)
Nancy Iwamoto
Abbreviations 251(4)
Index 255