Atjaunināt sīkdatņu piekrišanu

E-grāmata: Molecular Plant Abiotic Stress: Biology and Biotechnology

  • Formāts: PDF+DRM
  • Izdošanas datums: 12-Jun-2019
  • Izdevniecība: John Wiley & Sons Inc
  • Valoda: eng
  • ISBN-13: 9781119463689
Citas grāmatas par šo tēmu:
  • Formāts - PDF+DRM
  • Cena: 218,84 €*
  • * ši ir gala cena, t.i., netiek piemērotas nekādas papildus atlaides
  • Ielikt grozā
  • Pievienot vēlmju sarakstam
  • Šī e-grāmata paredzēta tikai personīgai lietošanai. E-grāmatas nav iespējams atgriezt un nauda par iegādātajām e-grāmatām netiek atmaksāta.
  • Bibliotēkām
  • Formāts: PDF+DRM
  • Izdošanas datums: 12-Jun-2019
  • Izdevniecība: John Wiley & Sons Inc
  • Valoda: eng
  • ISBN-13: 9781119463689
Citas grāmatas par šo tēmu:

DRM restrictions

  • Kopēšana (kopēt/ievietot):

    nav atļauts

  • Drukāšana:

    nav atļauts

  • Lietošana:

    Digitālo tiesību pārvaldība (Digital Rights Management (DRM))
    Izdevējs ir piegādājis šo grāmatu šifrētā veidā, kas nozīmē, ka jums ir jāinstalē bezmaksas programmatūra, lai to atbloķētu un lasītu. Lai lasītu šo e-grāmatu, jums ir jāizveido Adobe ID. Vairāk informācijas šeit. E-grāmatu var lasīt un lejupielādēt līdz 6 ierīcēm (vienam lietotājam ar vienu un to pašu Adobe ID).

    Nepieciešamā programmatūra
    Lai lasītu šo e-grāmatu mobilajā ierīcē (tālrunī vai planšetdatorā), jums būs jāinstalē šī bezmaksas lietotne: PocketBook Reader (iOS / Android)

    Lai lejupielādētu un lasītu šo e-grāmatu datorā vai Mac datorā, jums ir nepieciešamid Adobe Digital Editions (šī ir bezmaksas lietotne, kas īpaši izstrādāta e-grāmatām. Tā nav tas pats, kas Adobe Reader, kas, iespējams, jau ir jūsu datorā.)

    Jūs nevarat lasīt šo e-grāmatu, izmantojot Amazon Kindle.

A close examination of current research on abiotic stresses in various plant species

The unpredictable environmental stress conditions associated with climate change are significant challenges to global food security, crop productivity, and agricultural sustainability. Rapid population growth and diminishing resources necessitate the development of crops that can adapt to environmental extremities. Although significant advancements have been made in developing plants through improved crop breeding practices and genetic manipulation, further research is necessary to understand how genes and metabolites for stress tolerance are modulated, and how cross-talk and regulators can be tuned to achieve stress tolerance.

Molecular Plant Abiotic Stress: Biology and Biotechnology is an extensive investigation of the various forms of abiotic stresses encountered in plants, and susceptibility or tolerance mechanisms found in different plant species. In-depth examination of morphological, anatomical, biochemical, molecular and gene expression levels enables plant scientists to identify the different pathways and signaling cascades involved in stress response. This timely book:

  • Covers a wide range of abiotic stresses in multiple plant species
  • Provides researchers and scientists with transgenic strategies to overcome stress tolerances in several plant species
  • Compiles the most recent research and up-to-date data on stress tolerance
  • Examines both selective breeding and genetic engineering approaches to improving plant stress tolerances
  • Written and edited by prominent scientists and researchers from across the globe

Molecular Plant Abiotic Stress: Biology and Biotechnology is a valuable source of information for students, academics, scientists, researchers, and industry professionals in fields including agriculture, botany, molecular biology, biochemistry and biotechnology, and plant physiology.

List of Contributors xv
1 Plant Tolerance to Environmental Stress: Translating Research from Lab to Land 1(28)
P. Suprasanna
S.B. Ghag
1.1 Introduction
1(2)
1.2 Drought Tolerance
3(7)
1.3 Cold Tolerance
10(2)
1.4 Salinity Tolerance
12(4)
1.5 Need for More Translational Research
16(1)
1.6 Conclusion
17(1)
References
17(12)
2 Morphological and Anatomical Modifications of Plants for Environmental Stresses 29(16)
Chanda Bano
Nimisha Amist
N.B. Singh
2.1 Introduction
29(3)
2.2 Drought-induced Adaptations
32(1)
2.3 Cold-induced Adaptations
33(1)
2.4 High Temperature-induced Adaptations
34(1)
2.5 UV-B-induced Morphogenic Responses
35(1)
2.6 Heavy Metal-induced Adaptations
35(1)
2.7 Roles of Auxin, Ethylene, and ROS
36(1)
2.8 Conclusion
37(1)
References
38(7)
3 Stomatal Regulation as a Drought-tolerance Mechanism 45(20)
Shokoofeh Hajihashemi
3.1 Introduction
45(1)
3.2 Stomatal Morphology
46(1)
3.3 Stomatal Movement Mechanism
47(1)
3.4 Drought Stress Sensing
48(1)
3.5 Drought Stress Signaling Pathways
48(6)
3.5.1 Hydraulic Signaling
49(1)
3.5.2 Chemical Signaling
49(3)
3.5.2.1 Plant Hormones
49(3)
3.5.3 Nonhormonal Molecules
52(14)
3.5.3.1 Role of CO2 Molecule in Response to Drought Stress
52(1)
3.5.3.2 Role of Ca2+ Molecules in Response to Drought Stress
53(1)
3.5.3.3 Protein Kinase Involved in Osmotic Stress Signaling Pathway
53(1)
3.5.3.4 Phospholipid Role in Signal Transduction in Response to Drought Stress
53(1)
3.6 Mechanisms of Plant Response to Stress
54(2)
3.7 Stomatal Density Variation in Response to Stress
56(1)
3.8 Conclusion
56(1)
References
57(8)
4 Antioxidative Machinery for Redox Homeostasis During Abiotic Stress 65(26)
Nimisha Amist
Chanda Bano
N.B. Singh
4.1 Introduction
65(1)
4.2 Reactive Oxygen Species
66(8)
4.2.1 Types of Reactive Oxygen Species
67(2)
4.2.1.1 Superoxide Radical (O2.-)
67(1)
4.2.1.2 Singlet Oxygen (1O2)
68(1)
4.2.1.3 Hydrogen Peroxide (H2O2)
69(1)
4.2.1.4 Hydroxyl Radicals (OH.)
69(1)
4.2.2 Sites of ROS Generation
69(2)
4.2.2.1 Chloroplasts
70(1)
4.2.2.2 Peroxisomes
70(1)
4.2.2.3 Mitochondria
70(1)
4.2.3 ROS and Oxidative Damage to Biomolecules
71(2)
4.2.4 Role of ROS as Messengers
73(1)
4.3 Antioxidative Defense System in Plants
74(6)
4.3.1 Nonenzymatic Components of the Antioxidative Defense System
74(2)
4.3.1.1 Ascorbate
74(1)
4.3.1.2 Glutathione
75(1)
4.3.1.3 Tocopherols
75(1)
4.3.1.4 Carotenoids
76(1)
4.3.1.5 Phenolics
76(1)
4.3.2 Enzymatic Components
76(49)
4.3.2.1 Superoxide Dismutases
77(1)
4.3.2.2 Catalases
77(1)
4.3.2.3 Peroxidases
77(1)
4.3.2.4 Enzymes of the Ascorbate-Glutathione Cycle
78(1)
4.3.2.5 Monodehydroascorbate Reductase
79(1)
4.3.2.6 Dehydroascorbate Reductase
79(1)
4.3.2.7 Glutathione Reductase
79(1)
4.4 Redox Homeostasis in Plants
80(1)
4.5 Conclusion
81(1)
References
81(10)
5 Osmolytes and their Role in Abiotic Stress Tolerance in Plants 91(14)
Abhimanyu Jogawat
5.1 Introduction
91(1)
5.2 Osmolyte Accumulation is a Universally Conserved Quick Response During Abiotic Stress
92(1)
5.3 Osmolytes Minimize Toxic Effects of Abiotic Stresses in Plants
93(1)
5.4 Stress Signaling Pathways Regulate Osmolyte Accumulation Under Abiotic Stress Conditions
94(1)
5.5 Metabolic Pathway Engineering of Osmolyte Biosynthesis Can Generate Improved Abiotic Stress Tolerance in Transgenic Crop Plants
95(2)
5.6 Conclusion and Future Perspectives
97(1)
Acknowledgements
97(1)
References
97(8)
6 Elicitor-mediated Amelioration of Abiotic Stress in Plants 105(18)
Nilanjan Chakraborty
Anik Sarkar
Krishnendu Acharya
6.1 Introduction
105(1)
6.2 Plant Hormones and Other Elicitor-mediated Abiotic Stress Tolerance in Plants
106(3)
6.3 PGPR-mediated Abiotic Stress Tolerance in Plants
109(1)
6.4 Signaling Role of Nitric Oxide in Abiotic Stresses
109(5)
6.5 Future Goals
114(1)
6.6 Conclusion
114(1)
References
115(8)
7 Role of Selenium in Plants Against Abiotic Stresses: Phenological and Molecular Aspects 123(12)
Aditya Banerjee
Aryadeep Roychoudhury
7.1 Introduction
123(1)
7.2 Se Bioaccumulation and Metabolism in Plants
124(1)
7.3 Physiological Roles of Se
125(1)
7.3.1 Se as Plant Growth Promoters
125(1)
7.3.2 The Antioxidant Properties of Se
125(1)
7.4 Se Ameliorating Abiotic Stresses in Plants
126(3)
7.4.1 Se and Salt Stress
126(1)
7.4.2 Se and Drought Stress
127(1)
7.4.3 Se Counteracting Low-temperature Stress
128(1)
7.4.4 Se Ameliorating the Effects of UV-B Irradiation
128(1)
7.4.5 Se and Heavy Metal Stress
129(1)
7.5 Conclusion
129(1)
7.6 Future Perspectives
130(1)
References
130(5)
8 Polyamines Ameliorate Oxidative Stress by Regulating Antioxidant Systems and Interacting with Plant Growth Regulators 135(10)
Prabal Das
Aditya Banerjee
Aryadeep Roychoudhury
8.1 Introduction
135(1)
8.2 PAs as Cellular Antioxidants
136(1)
8.2.1 PAs Scavenge Reactive Oxygen Species
136(1)
8.2.2 The Co-operative Biosynthesis of PAs and Proline
137(1)
8.3 The Relationship Between PAs and Growth Regulators
137(2)
8.3.1 Brassinosteroids and PAs
137(1)
8.3.2 Ethylene and PAs
137(1)
8.3.3 Salicylic Acid and PAs
138(1)
8.3.4 Abscisic Acid and PAs
138(1)
8.4 Conclusion and Future Perspectives
139(1)
Acknowledgments
140(1)
References
140(5)
9 Abscisic Acid in Abiotic Stress-responsive Gene Expression 145(40)
Liliane Souza Conceicao Tavares
Savio Pinho dos Reis
Deyvid Novaes Marques
Eraldo Jose Madureira Tavares
Solange da Cunha Ferreira
Francinilson Meireles Coelho
Claudia Regina Batista de Souza
9.1 Introduction
145(1)
9.2 Deep Evolutionary Roots
146(5)
9.3 ABA Chemical Structure, Biosynthesis, and Metabolism
151(2)
9.4 ABA Perception and Signaling
153(1)
9.5 ABA Regulation of Gene Expression
154(10)
9.5.1 Cis-regulatory Elements
155(1)
9.5.2 Transcription Factors Involved in the ABA-Mediated Abiotic Stress Response
156(54)
9.5.2.1 bZIP Family
157(1)
9.5.2.2 MYC and MYB
157(2)
9.5.2.3 NAC Family
159(1)
9.5.2.4 AP2/ERF Family
160(2)
9.5.2.5 Zinc Finger Family
162(2)
9.6 Post-transcriptional and Post-translational Control in Regulating ABA Response
164(3)
9.7 Epigenetic Regulation of ABA Response
167(1)
9.8 Conclusion
168(1)
References
169(16)
10 Abiotic Stress Management in Plants: Role of Ethylene 185(24)
Anket Sharma
Vinod Kumar
Gagan Preet Singh Sidhu
Rakesh Kumar
Sukhmeen Kaur Kohli
Poonam Yadav
Dhriti Kapoor
Aditi Shreeya Bali
Babar Shahzad
Kanika Khanna
Sandeep Kumar
Ashwani Kumar Thukral
Renu Bhardwaj
10.1 Introduction
185(1)
10.2 Ethylene: Abundance, Biosynthesis, Signaling, and Functions
186(1)
10.3 Abiotic Stress and Ethylene Biosynthesis
187(1)
10.4 Role of Ethylene in Photosynthesis Under Abiotic Stress
188(6)
10.5 Role of Ethylene on ROS and Antioxidative System Under Abiotic Stress
194(2)
10.6 Conclusion
196(1)
References
196(13)
11 Crosstalk Among Phytohormone Signaling Pathways During Abiotic Stress 209(12)
Abhimanyu Jogawat
11.1 Introduction
209(1)
11.2 Phytohormone Crosstalk Phenomenon and its Necessity
210(1)
11.3 Various Phytohormonal Crosstalk Under Abiotic Stresses for Improving Stress Tolerance
210(3)
11.3.1 Crosstalk Between ABA and GA
210(1)
11.3.2 Crosstalk Between GA and ET
211(1)
11.3.3 Crosstalk Between ABA and ET
211(1)
11.3.4 Crosstalk Between ABA and Auxins
212(1)
11.3.5 Crosstalk Between ET and Auxins
213(1)
11.3.6 Crosstalk Between ABA and CTs
213(1)
11.4 Conclusion and Future Directions
213(2)
Acknowledgements
215(1)
References
215(6)
12 Plant Molecular Chaperones: Structural Organization and their Roles in Abiotic Stress Tolerance 221(20)
Roshan Kumar Singh
Varsha Gupta
Manoj Prasad
12.1 Introduction
221(2)
12.2 Classification of Plant HSPs
223(7)
12.2.1 Structure and Functions of sHSP Family
223(1)
12.2.2 Structure and Functions of HSP60 Family
224(1)
12.2.3 Structure and Functions of the HSP70 Family
225(3)
12.2.3.1 DnaJ/HSP40
227(1)
12.2.4 Structure and Functions of HSP90 Family
228(1)
12.2.5 Structure and Functions of HSP100 Family
229(1)
12.3 Regulation of HSP Expression in Plants
230(1)
12.4 Crosstalk Between HSP Networks to Provide Tolerance Against Abiotic Stress
231(1)
12.5 Genetic Engineering of HSPs for Abiotic Stress Tolerance in Plants
232(2)
12.6 Conclusion
234(1)
Acknowledgements
234(1)
References
234(7)
13 Chloride (CI-) Uptake, Transport, and Regulation in Plant Salt Tolerance 241(28)
D.B. Shelke
G.C. Nikalje
T.D. Nikam
P. Maheshwari
D.L. Punita
K.R.S.S. Rao
P.B. Kavi Kishor
P. Suprasanna
13.1 Introduction
241(1)
13.2 Sources of Cl- Ion Contamination
242(1)
13.3 Role of Cl- in Plant Growth and Development
243(1)
13.4 Cl- Toxicity
244(1)
13.5 Interaction of Soil with Plant Tissues
245(2)
13.5.1 Cl- Influx from Soil to Root
245(1)
13.5.2 Mechanism of Cl- Efflux at the Membrane Level
245(1)
13.5.3 Differential Accumulation of Cl- in Plants and Compartmentalization
246(1)
13.6 Electrophysiological Study of Cl- Anion Channels in Plants
247(1)
13.7 Channels and Transporters Participating in Cl- Homeostasis
248(12)
13.7.1 Slow Anion Channel and Associated Homologs
249(2)
13.7.2 QUAC1 and Aluminum-activated Malate Transporters
251(2)
13.7.3 Plant Chloride Channel Family Members
253(2)
13.7.4 Phylogenetic Tree and Tissue Localization of CLC Family Members
255(2)
13.7.5 Cation, Chloride Co-transporters
257(1)
13.7.6 ATP-binding Cassette Transporters and Chloride Conductance Regulatory Protein
258(1)
13.7.7 Nitrate Transporter1/Peptide Transporter Proteins
259(1)
13.7.8 Chloride Channel-mediated Anion Transport
259(1)
13.7.9 Possible Mechanisms of Cl- Influx, Efflux, Reduced Net Xylem Loading, and its Compartmentalization
260(1)
13.8 Conclusion and Future Perspectives
260(1)
References
261(8)
14 The Root Endomutualist Piriformospora indica: A Promising Bio-tool for Improving Crops under Salinity Stress 269(14)
Abhimanyu Jogawat
Deepa Bisht
Nidhi Verma
Meenakshi Dua
Atul Kumar Johri
14.1 Introduction
269(1)
14.2 P. indica: An Extraordinary Tool for Salinity Stress Tolerance Improvement
269(1)
14.3 Utilization of P. indica for Improving and Understanding the Salinity Stress Tolerance of Host Plants
270(1)
14.4 P. indica-induced Biomodulation in Host Plant under Salinity Stress
270(2)
14.5 Activity of Antioxidant Enzymes and ROS in Host Plant During Interaction with P. indica
272(1)
14.6 Role of Calcium Signaling and MAP Kinase Signaling Combating Salt Stress
272(1)
14.7 Effect of P. indica on Osmolyte Synthesis and Accumulation
273(1)
14.8 Salinity Stress Tolerance Mechanism in Axenically Cultivated and Root Colonized P indica
274(3)
14.9 Conclusion
277(1)
Acknowledgments
278(1)
Conflict of Interest
278(1)
References
278(5)
15 Root Endosymbiont-mediated Priming of Host Plants for Abiotic Stress Tolerance 283(18)
Abhimanyu Jogawat
Deepa Bisht
Atul Kumar Johri
15.1 Introduction
283(1)
15.2 Bacterial Symbionts-mediated Abiotic Stress Tolerance Priming of Host Plants
284(2)
15.3 AM Fungi-mediated Alleviation of Abiotic Stress Tolerance of Vascular Plants
286(1)
15.4 Other Beneficial Fungi and their Importance in Abiotic Stress Tolerance Priming of Plants
287(2)
15.4.1 Piriformospora indica: A Model System for Bio-priming of Host Plants Against Abiotic Stresses
288(1)
15.4.2 Fungal Endophytes, AM-like Fungi, and Other DSE-mediated Bio-priming of Host Plants for Abiotic Stress Tolerance
289(1)
15.5 Implication of Transgenes from Symbiotic Microorganisms in the Era of Genetic Engineering and Omics
289(1)
15.6 Conclusion and Future Perspectives
290(1)
Acknowledgements
291(1)
References
291(10)
16 Insight into the Molecular Interaction Between Leguminous Plants and Rhizobia Under Abiotic Stress 301(14)
Sumanti Gupta
Sampa Das
16.1 Introduction
301(1)
16.1.1 Why is Legume-Rhizobium Interaction Under the Scientific Scanner?
301(1)
16.2 Legume-Rhizobium Interaction Chemistry: A Brief Overview
302(5)
16.2.1 Nodule Structure and Formation: The Sequential Events
302(2)
16.2.2 Nod Factor Signaling: From Perception to Nodule Inception
304(1)
16.2.3 Reactive Oxygen Species: The Crucial Role of the Mobile Signal in Nodulation
305(1)
16.2.4 Phytohormones: Key Players on All Occasions
306(1)
16.2.5 Autoregulation of Nodulation: The Self Control from Within
306(1)
16.3 Role of Abiotic Stress Factors in Influencing Symbiotic Relations of Legumes
307(2)
16.3.1 How Do Abiotic Stress Factors Alter Rhizobial Behavior During Symbiotic Association?
307(1)
16.3.2 Abiotic Agents Modulate Symbiotic Signals of Host Legumes
308(1)
16.3.3 Abiotic Stress Agents as Regulators of Defense Signals of Symbiotic Hosts During Interaction with Other Pathogens
309(1)
16.4 Conclusion: The Lessons Unlearnt
309(1)
References
310(5)
17 Effect of Nanoparticles on Oxidative Damage and Antioxidant Defense System in Plants 315(20)
Savita Sharma
Vivek K. Singh
Anil Kumar
Sharada Mallubhotla
17.1 Introduction
315(2)
17.2 Engineered Nanoparticles in the Environment
317(1)
17.3 Nanoparticle Transformations
318(2)
17.4 Plant Response to Nanoparticle Stress
320(3)
17.5 Generation of Reactive Oxygen Species (ROS)
323(1)
17.6 Nanoparticle Induced Oxidative Stress
324(2)
17.7 Antioxidant Defense System in Plants
326(1)
17.8 Conclusion
327(1)
References
328(7)
18 Marker-assisted Selection for Abiotic Stress Tolerance in Crop Plants 335(34)
Saikat Gantait
Sutanu Sarkar
Sandeep Kumar Verma
18.1 Introduction
335(1)
18.2 Reaction of Plants to Abiotic Stress
336(1)
18.3 Basic Concept of Abiotic Stress Tolerance in Plants
337(1)
18.4 Genetics of Abiotic Stress Tolerance
338(1)
18.5 Fundamentals of Molecular Markers and Marker-assisted Selection
339(2)
18.5.1 Molecular Markers
339(2)
18.5.2 Marker-assisted Selection
341(1)
18.6 Marker-assisted Selection for Abiotic Stress Tolerance in Crop Plants
341(3)
18.6.1 Marker-assisted Selection for Heat Tolerance
342(2)
18.6.1.1 Wheat (Triticum aestivum)
342(1)
18.6.1.2 Cowpea (Vigna unguiculata)
343(1)
18.6.1.3 Oilseed Brassica
343(1)
18.6.1.4 Grape (Vitis species)
343(1)
18.7 Marker-assisted Selection for Drought Tolerance
344(12)
18.7.1.1 Maize (Zea mays)
344(1)
18.7.1.2 Chickpea (Cicer arietinum)
345(1)
18.7.1.3 Oilseed Brassica
346(1)
18.7.1.4 Coriander (Coriandrum sativum)
346(1)
18.7.2 Marker-assisted Selection for Salinity Tolerance
347(4)
18.7.2.1 Rice (Oryza sativa)
347(1)
18.7.2.2 Mungbean (Vigna radiata)
348(1)
18.7.2.3 Oilseed Brassica
349(1)
18.7.2.4 Tomato (Solanum lycopersicum)
350(1)
18.7.3 Marker-assisted Selection for Low Temperature Tolerance
351(20)
18.7.3.1 Barley (Hordeum vulgare)
351(2)
18.7.3.2 Pea (Pisum sativum)
353(1)
18.7.3.3 Oilseed Brassica
354(1)
18.7.3.4 Potato (Solanum tuberosum)
355(1)
18.8 Outlook
356(1)
References
356(13)
19 Transgenes: The Key to Understanding Abiotic Stress Tolerance in Rice 369(20)
Supratim Basu
Lymperopoulos Panagiotis
Joseph Msanne
Roel Rabara
19.1 Introduction
369(1)
19.2 Drought Effects in Rice Leaves
370(1)
19.3 Molecular Analysis of Drought Stress Response
370(1)
19.4 Omics Approach to Analysis of Drought Response
371(3)
19.4.1 Transcriptomics
371(1)
19.4.2 Metabolomics
372(1)
19.4.3 Epigenomics
373(1)
19.5 Plant Breeding Techniques to Improve Rice Tolerance
374(1)
19.6 Marker-assisted Selection
374(1)
19.7 Transgenic Approach: Present Status and Future Prospects
375(1)
19.8 Looking into the Future for Developing Drought-tolerant Transgenic Rice Plants
376(1)
19.9 Salinity Stress in Rice
376(2)
19.10 Candidate Genes for Salt Tolerance in Rice
378(1)
19.11 QTL Associated with Rice Tolerance to Salinity Stress
379(1)
19.12 The Saltol QTL
380(1)
19.13 Conclusion
381(1)
References
381(8)
20 Impact of Next-generation Sequencing in Elucidating the Role of microRNA Related to Multiple Abiotic Stresses 389(38)
Kavita Goswami
Anita Tripathi
Budhayash Gautam
Neeti Sanan-Mishra
20.1 Introduction
389(1)
20.2 NGS Platforms and their Applications
390(8)
20.2.1 NGS Platforms
390(4)
20.2.1.1 Roche 454
390(1)
20.2.1.2 ABI SoLid
391(1)
20.2.1.3 ION Torrent
392(1)
20.2.1.4 Illumina
393(1)
20.2.2 Applications of NGS
394(4)
20.2.2.1 Genomics
395(1)
20.2.2.2 Metagenomics
396(1)
20.2.2.3 Epigenomics
396(1)
20.2.2.4 Transcriptomics
397(1)
20.3 Understanding the Small RNA Family
398(4)
20.3.1 Small Interfering RNAs
398(4)
20.3.2 microRNA
402(1)
20.4 Criteria and Tools for Computational Classification of Small RNAs
402(5)
20.4.1 Pre-processing (Quality Filtering and Sequence Alignment)
403(1)
20.4.2 Identification and Prediction of miRNAs and siRNAs
403(4)
20.5 Role of NGS in Identification of Stress-regulated miRNA and their Targets
407(4)
20.5.1 miR156
408(1)
20.5.2 miR159
408(1)
20.5.3 miR160
409(1)
20.5.4 miR164
409(1)
20.5.5 miR166
409(1)
20.5.6 miR167
409(1)
20.5.7 miR168
410(1)
20.5.8 miR169
410(1)
20.5.9 miR172
410(1)
20.5.10 miR393
410(1)
20.5.11 miR396
411(1)
20.5.12 miR398
411(1)
20.6 Conclusion
411(1)
Acknowledgments
412(1)
References
412(15)
21 Understanding the Interaction of Molecular Factors During the Crosstalk Between Drought and Biotic Stresses in Plants 427(20)
Arnab Purohit
Shreeparna Ganguly
Rituparna Kundu Chaudhuri
Dipankar Chakraborti
21.1 Introduction
427(1)
21.2 Combined Stress Responses in Plants
428(1)
21.3 Combined Drought-Biotic Stresses in Plants
428(2)
21.3.1 Plant Responses Against Biotic Stress during Drought Stress
429(1)
21.3.2 Plant Responses Against Drought Stress during Biotic Stress
430(1)
21.4 Varietal Failure Against Multiple Stresses
430(1)
21.5 Transcriptome Studies of Multiple Stress Responses
431(1)
21.6 Signaling Pathways Induced by Drought-Biotic Stress Responses
432(6)
21.6.1 Reactive Oxygen Species
432(1)
21.6.2 Mitogen-activated Protein Kinase Cascades
433(1)
21.6.3 Transcription Factors
434(2)
21.6.4 Heat Shock Proteins and Heat Shock Factors
436(1)
21.6.5 Role of ABA Signaling during Crosstalk
437(1)
21.7 Conclusion
438(1)
Acknowledgments
439(1)
Conflict of Interest
439(1)
References
439(8)
Index 447
Dr. Aryadeep Roychoudhury is Assistant Professor, Department of Biotechnology, St. Xavier's College (Autonomous), Kolkata, India.

Dr. Durgesh Kumar Tripathi is Assistant Professor, Amity Institute of Organic Agriculture, Amity University, Noida, Uttar Pradesh, India.