nav atļauts
nav atļauts
Digitālo tiesību pārvaldība (Digital Rights Management (DRM))
Izdevējs ir piegādājis šo grāmatu šifrētā veidā, kas nozīmē, ka jums ir jāinstalē bezmaksas programmatūra, lai to atbloķētu un lasītu. Lai lasītu šo e-grāmatu, jums ir jāizveido Adobe ID. Vairāk informācijas šeit. E-grāmatu var lasīt un lejupielādēt līdz 6 ierīcēm (vienam lietotājam ar vienu un to pašu Adobe ID).
Nepieciešamā programmatūra
Lai lasītu šo e-grāmatu mobilajā ierīcē (tālrunī vai planšetdatorā), jums būs jāinstalē šī bezmaksas lietotne: PocketBook Reader (iOS / Android)
Lai lejupielādētu un lasītu šo e-grāmatu datorā vai Mac datorā, jums ir nepieciešamid Adobe Digital Editions (šī ir bezmaksas lietotne, kas īpaši izstrādāta e-grāmatām. Tā nav tas pats, kas Adobe Reader, kas, iespējams, jau ir jūsu datorā.)
Jūs nevarat lasīt šo e-grāmatu, izmantojot Amazon Kindle.
Chapter 1: The Monte Carlo Method and Its Applications to Heavily Charged Particle Therapy.
Chapter 2: Applications of Monte Carlo Calculations in Clinical Dosimetry of Proton and Ion Beams.
Chapter 3: Solving Range Uncertainties with Gamma Prompt/Charged Particle Prompt.
Chapter 4: Macroscopic and microscopic calculation approaches for LET calculations.
Chapter 5: Low energy inelastic process in hadrontherapy.
Chapter 6: Experimental Data of Nuclear Fragmentation for Validating Monte Carlo Modes: Present Availability and Lacks.
Chapter 7: Quality assurance in particle therapy with PET.
Chapter 8: Radioactive beams for ion therapy: Monte Carlo simulations and experimental verifications.
Chapter 9: Monte Carlo and Microdosimetry in particle radiotherapy.
Chapter 10: Monte Carlo to link RBE with radiation quality quantities.
Chapter 11: Physical and Biological Impact of Projectile and Target Fragmentation.
Chapter 12: Monte Carlo characterisation of nanoparticle radio-enhancement for hadron therapy.
Chapter 13: Increasing particle therapy biological effectiveness by nuclear reaction-driven binary strategies.
Chapter 14: Monte Carlo simulations for Targeted Alpha Therapy.
Chapter 15: Experimental and modelling challenges in FLASH radiotherapy with Monte Carlo Methods.
Chapter 16: Towards Multiple Ion Applications in Particle Therapy.
Chapter 17: Monte Carlo for chemistry in radiation biology.
Chapter 18: Recent developments in the TRAX particle track structure code.
Chapter 19: Machine Learning for Monte Carlo Simulations.
Chapter 20: Speed-up MC in charged particle applications.
Chapter 21: Monte Carlo and Analytical codes for Dose planning and recalculation: limits and differential advantages.