Atjaunināt sīkdatņu piekrišanu

E-grāmata: Mooring System Engineering for Offshore Structures

(Mooring and Riser Consultant, Texas, USA), (President, Texas, USA), (Senior Advisor, Mooring Engineering, Texas, USA), (Lead Mooring Engineer, Texas, USA)
  • Formāts: EPUB+DRM
  • Izdošanas datums: 04-Jun-2019
  • Izdevniecība: Gulf Professional Publishing
  • Valoda: eng
  • ISBN-13: 9780128185520
  • Formāts - EPUB+DRM
  • Cena: 131,42 €*
  • * ši ir gala cena, t.i., netiek piemērotas nekādas papildus atlaides
  • Ielikt grozā
  • Pievienot vēlmju sarakstam
  • Šī e-grāmata paredzēta tikai personīgai lietošanai. E-grāmatas nav iespējams atgriezt un nauda par iegādātajām e-grāmatām netiek atmaksāta.
  • Formāts: EPUB+DRM
  • Izdošanas datums: 04-Jun-2019
  • Izdevniecība: Gulf Professional Publishing
  • Valoda: eng
  • ISBN-13: 9780128185520

DRM restrictions

  • Kopēšana (kopēt/ievietot):

    nav atļauts

  • Drukāšana:

    nav atļauts

  • Lietošana:

    Digitālo tiesību pārvaldība (Digital Rights Management (DRM))
    Izdevējs ir piegādājis šo grāmatu šifrētā veidā, kas nozīmē, ka jums ir jāinstalē bezmaksas programmatūra, lai to atbloķētu un lasītu. Lai lasītu šo e-grāmatu, jums ir jāizveido Adobe ID. Vairāk informācijas šeit. E-grāmatu var lasīt un lejupielādēt līdz 6 ierīcēm (vienam lietotājam ar vienu un to pašu Adobe ID).

    Nepieciešamā programmatūra
    Lai lasītu šo e-grāmatu mobilajā ierīcē (tālrunī vai planšetdatorā), jums būs jāinstalē šī bezmaksas lietotne: PocketBook Reader (iOS / Android)

    Lai lejupielādētu un lasītu šo e-grāmatu datorā vai Mac datorā, jums ir nepieciešamid Adobe Digital Editions (šī ir bezmaksas lietotne, kas īpaši izstrādāta e-grāmatām. Tā nav tas pats, kas Adobe Reader, kas, iespējams, jau ir jūsu datorā.)

    Jūs nevarat lasīt šo e-grāmatu, izmantojot Amazon Kindle.

Mooring System Engineering for Offshore Structures delivers in-depth knowledge on mooring system engineering in oil and gas drilling, production, construction and renewable energy. Providing adequate information for daily offshore challenges, this reference gives beginners a solid look at the fundamentals involved, along with a literature review to fill in knowledge gaps. Topics include mooring designs with coverage on current standards and codes, mooring analysis, and theories behind a mooring analysis of quasi-static or dynamic approaches. Advancing on to the practical use of design criteria for strength and fatigue, this book summarizes the experience and lessons learned in installation, operation, inspection and maintenance.

Both young and experienced offshore oil and gas engineers will benefit from the knowledge presented on the things they need to understand regarding the various types of mooring systems, their design, analysis and operations to run safely, efficiently, and at high performance.

  • Helps readers understand the various types of mooring systems and the theories behind mooring analysis
  • Provides practical experience and lessons learned from worldwide case studies
  • Combines strong mooring engineering fundamentals with practical applications to solve today’s offshore oil and gas challenges
Biographies xv
Foreword xvii
Preface xix
Acknowledgment xxiii
1 Introduction 1(18)
1.1 Overview
1(1)
1.2 History of offshore mooring
2(5)
1.2.1 Floating drilling-rapid growth in the 1960s and 1970s
2(3)
1.2.2 Floating production-deepwater boom in 2000s
5(1)
1.2.3 Technologies-enabling the migration to deeper water
5(1)
1.2.4 Industry standards-multiple codes needing harmonization
6(1)
1.3 Floating drilling enabled by mooring
7(3)
1.3.1 Drilling semi
8(1)
1.3.2 Drillship
9(1)
1.3.3 Tender-assisted drilling (TAD)
9(1)
1.4 Floating production enabled by mooring
10(6)
1.4.1 Tension-leg platform (TLP)
11(1)
1.4.2 Semisubmersible (semi)
11(1)
1.4.3 Spar
12(1)
1.4.4 FPSO and FSO
13(2)
1.4.5 Catenary Anchor Leg Mooring (CALM) buoy
15(1)
1.5 Differences between drilling and production
16(1)
1.6 Floating wind turbine
17(1)
1.7 Questions
18(1)
References
18(1)
2 Types of mooring systems 19(22)
2.1 Overview
19(2)
2.1.1 Temporary versus permanent moorings
20(1)
2.1.2 Catenary versus taut leg moorings
20(1)
2.1.3 Spread versus single-point moorings
21(1)
2.2 Spread mooring system
21(2)
2.2.1 Equally-spread versus clustered-spread moorings
23(1)
2.3 Single-point mooring system
23(9)
2.3.1 Internal turret mooring system
24(2)
2.3.2 External turret mooring system
26(2)
2.3.3 Disconnectable turret mooring system
28(4)
2.4 Other types of single-point mooring system
32(3)
2.4.1 Tower yoke mooring system
32(2)
2.4.2 Catenary anchor leg mooring system
34(1)
2.5 Dynamic positioning and thruster-assisted systems
35(3)
2.5.1 Dynamic positioning system
35(3)
2.5.2 Thruster-assisted mooring system
38(1)
2.6 Questions
38(1)
References
39(2)
3 Environmental loads and vessel motions 41(22)
3.1 Loads on floating structures
41(3)
3.1.1 Mooring system to resist environmental loads
41(2)
3.1.2 Site-specific environmental data
43(1)
3.1.3 Loads in different frequency ranges
43(1)
3.2 Wind load
44(4)
3.2.1 Description of winds
44(2)
3.2.2 Wind-induced forces
46(2)
3.3 Wave load and vessel motions
48(6)
3.3.1 Description of waves and swells
48(3)
3.3.2 Wave-induced forces and motions
51(3)
3.4 Current load and vortex-induced motion
54(3)
3.4.1 Description of currents
54(2)
3.4.2 Current-induced forces and vortex-induced motion
56(1)
3.5 Ice load
57(2)
3.5.1 Description of ices
58(1)
3.5.2 Ice-induced forces and ice management
58(1)
3.6 Other topics on environment loads
59(2)
3.6.1 Directional combination of wind, waves, and current
60(1)
3.6.2 Sensitivity study on wave period
60(1)
3.6.3 Wave-current interaction
61(1)
3.7 Questions
61(1)
References
61(2)
4 Mooring design 63(22)
4.1 Design basis
64(1)
4.1.1 Gather input data
64(1)
4.2 Design process
65(9)
4.2.1 Select mooring system type
67(1)
4.2.2 Determine the profile (catenary or taut leg)
67(1)
4.2.3 Design the mooring pattern
68(3)
4.2.4 Design the mooring line composition
71(2)
4.2.5 Optimize the mooring design
73(1)
4.3 Design considerations
74(3)
4.3.1 Limiting vessel offset
75(1)
4.3.2 Minimizing line tension
75(1)
4.3.3 Reducing fatigue damage accumulation
76(1)
4.3.4 Avoiding clash or interference
76(1)
4.4 Design criteria
77(3)
4.4.1 Design codes
77(1)
4.4.2 Vessel offset requirement
77(1)
4.4.3 Strength design criteria
78(1)
4.4.4 Fatigue design criteria
79(1)
4.4.5 Operability requirement
80(1)
4.5 Engineering analysis and code check
80(2)
4.5.1 Mooring analysis load cases
81(1)
4.6 Questions
82(1)
References
83(2)
5 Mooring analysis 85(30)
5.1 Theoretical background
86(7)
5.1.1 Governing equations of mooring line
86(1)
5.1.2 Static solution-catenary equation
87(2)
5.1.3 Mooring line stiffness
89(2)
5.1.4 Mooring line dynamics
91(1)
5.1.5 Mooring system
91(2)
5.2 System modeling
93(4)
5.2.1 Modeling of floaters
93(1)
5.2.2 Modeling of mooring lines
94(2)
5.2.3 Modeling of risers
96(1)
5.2.4 Modeling of environments and seabed
96(1)
5.2.5 Analysis procedure
96(1)
5.3 Modeling of polyester rope stiffness
97(4)
5.3.1 Upper-lower bound model
98(1)
5.3.2 Static-dynamic model
99(2)
5.4 Quasistatic or dynamic analyses
101(1)
5.5 Strength analysis in frequency domain
102(3)
5.5.1 Response transfer functions
102(1)
5.5.2 Frequency-domain analysis procedures
103(1)
5.5.3 Limitation of frequency-domain analysis
104(1)
5.6 Strength analysis in time-domain
105(2)
5.6.1 Time-domain approach
105(1)
5.6.2 Analysis procedure
106(1)
5.6.3 Summary
106(1)
5.7 Uncoupled and coupled analyses
107(2)
5.7.1 Uncoupled analysis
107(1)
5.7.2 Coupled analysis
108(1)
5.7.3 Industry practice
109(1)
5.8 Response-based analysis
109(1)
5.9 Mooring software
110(2)
5.9.1 OrcaFlex by Orcina Ltd.
110(1)
5.9.2 DeepC/SESAM by DNV GL
110(1)
5.9.3 Ariane by Bureau Veritas
111(1)
5.9.4 Other tools
111(1)
5.10 Questions
112(1)
References
112(3)
6 Fatigue analysis 115(24)
6.1 Overview
115(2)
6.1.1 Miner's rule
117(1)
6.2 Fatigue resistance of mooring components
117(5)
6.2.1 T-N curves for chain, connectors and wire ropes
118(1)
6.2.2 S-N curves for chain and wire ropes
119(1)
6.2.3 T-N curve for polyester ropes
120(1)
6.2.4 Comparison between T-N and S-N curves
121(1)
6.3 Fatigue analysis in frequency domain
122(3)
6.3.1 Simple summation approach
123(1)
6.3.2 Combined spectrum approach
124(1)
6.3.3 Dual narrow band approach
125(1)
6.4 Fatigue analysis in time domain
125(1)
6.5 Fatigue analysis procedure
126(2)
6.6 Vortex-induced motion fatigue
128(4)
6.6.1 Mechanism of vortex-induced motion
128(1)
6.6.2 Vortex-induced motion fatigue assessment
129(3)
6.7 Out-of-plane bending fatigue for chain
132(4)
6.7.1 Mechanism of out-of-plane bending fatigue
132(2)
6.7.2 Out-of-plane bending fatigue assessment
134(2)
6.8 Questions
136(1)
References
136(3)
7 Model tests 139(16)
7.1 Types of model tests
140(3)
7.1.1 Ocean basin model test
140(1)
7.1.2 Wind tunnel test
141(1)
7.1.3 Towing tank test
141(1)
7.1.4 Ice tank test
142(1)
7.2 Principle of model test
143(2)
7.2.1 Scale factor
144(1)
7.3 Capability of model basin facilities
145(2)
7.3.1 Wind generation
145(1)
7.3.2 Wavemaker
145(1)
7.3.3 Current generation
146(1)
7.4 Limitations of model test
147(1)
7.5 Mooring system truncation
148(2)
7.5.1 Mooring truncation
148(1)
7.5.2 Truncation design
149(1)
7.5.3 Limitations due to truncation
149(1)
7.5.4 Other truncation methods
150(1)
7.6 Hybrid test method
150(2)
7.6.1 Hybrid method
150(1)
7.6.2 Basic principle
150(1)
7.6.3 Numerical tools
151(1)
7.7 Model test execution
152(1)
7.7.1 Model preparation
152(1)
7.7.2 Environment calibration
152(1)
7.7.3 Data collection and processing
152(1)
7.8 Questions
153(1)
References
153(2)
8 Anchor selection 155(20)
8.1 Overview
155(3)
8.1.1 Available anchor types
155(2)
8.1.2 Anchor design considerations
157(1)
8.1.3 Soil characterization
157(1)
8.2 Suction piles
158(3)
8.2.1 Holding capacity of suction piles
159(1)
8.2.2 Suction pile installation
160(1)
8.3 Driven piles
161(2)
8.3.1 Holding capacity of driven piles
162(1)
8.3.2 Driven pile installation
163(1)
8.4 Drag embedment anchors
163(3)
8.4.1 Advantages and limitations of drag embedment anchors
164(1)
8.4.2 Holding capacity of drag embedment anchors
165(1)
8.4.3 Drag embedment anchor installation and recovery
165(1)
8.5 Vertically loaded anchors
166(2)
8.5.1 Vertically loaded anchor for permanent and temporary moorings
166(1)
8.5.2 Holding capacity of vertically loaded anchors
167(1)
8.5.3 Vertically loaded anchor installation
168(1)
8.6 Suction embedded plate anchors
168(2)
8.6.1 Advantages and limitations of suction embedded plate anchor
168(1)
8.6.2 Suction embedded plate anchor installation
169(1)
8.7 Gravity installed anchors
170(3)
8.7.1 Torpedo anchor
170(1)
8.7.2 OMNI-Max anchor
171(2)
8.8 Questions
173(1)
References
173(2)
9 Hardware - off-vessel components 175(24)
9.1 Mooring line compositions
175(1)
9.2 Chain
176(4)
9.2.1 Studlink versus studless
177(1)
9.2.2 Chain grades
177(1)
9.2.3 Manufacturing process
178(2)
9.3 Wire rope
180(3)
9.3.1 Six-strand versus spiral strand
181(1)
9.3.2 Corrosion protection
182(1)
9.3.3 Termination with sockets
183(1)
9.4 Polyester rope
183(4)
9.4.1 First use of polyester mooring in deepwater
185(1)
9.4.2 Rope constructions
185(2)
9.4.3 Polyester stretch
187(1)
9.5 Other synthetic ropes
187(4)
9.5.1 Nylon rope
188(1)
9.5.2 High modulus polyethylene rope
188(2)
9.5.3 Aramid rope
190(1)
9.5.4 Considerations for moorings in ultradeep waters
190(1)
9.6 Connectors
191(4)
9.6.1 Connectors for permanent moorings
191(2)
9.6.2 Connectors for temporary moorings
193(2)
9.7 Buoy
195(1)
9.8 Clump weight
196(1)
9.9 Questions
197(1)
References
197(2)
10 Hardware-on-vessel equipment 199(16)
10.1 Tensioning systems
199(4)
10.1.1 Fairlead and stopper
201(1)
10.1.2 Hydraulic or electric power unit
201(1)
10.1.3 Chain locker
202(1)
10.2 Chain jack
203(1)
10.3 Chain windlass
204(2)
10.3.1 Movable windlass (or chain jack)
204(2)
10.4 Wire winch
206(3)
10.4.1 Drum winch
206(1)
10.4.2 Traction winch
207(2)
10.4.3 Linear winch
209(1)
10.5 In-line tensioner
209(3)
10.6 Summary
212(1)
10.7 Questions
212(1)
References
212(3)
11 Installation 215(18)
11.1 Site investigation
215(2)
11.1.1 Geophysical survey
216(1)
11.1.2 Geotechnical survey
216(1)
11.2 Installation of permanent mooring
217(8)
11.2.1 Phase I-installation of pile anchors
217(2)
11.2.2 Phase II-prelay of mooring lines on seabed
219(3)
11.2.3 Phase Ill-hook-up of mooring lines to floating production unit
222(3)
11.3 Deployment and retrieval of temporary mooring
225(4)
11.3.1 Rig mooring system for mobile offshore drilling unit
226(2)
11.3.2 Preset mooring system for mobile offshore drilling unit
228(1)
11.4 Installation vessel
229(2)
11.4.1 Anchor handling vessel
229(1)
11.4.2 Anchor handling vessel incident-capsizing of Bourbon Dolphin
230(1)
11.5 Questions
231(1)
References
232(1)
12 Inspection and monitoring 233(22)
12.1 Inspection
233(1)
12.1.1 Regulatory requirements
234(1)
12.2 Inspection schedule
234(2)
12.2.1 As-built survey for permanent mooring
235(1)
12.2.2 Periodic surveys for permanent mooring
235(1)
12.2.3 Periodic surveys for Mobile Offshore Drilling Unit mooring
236(1)
12.3 Inspection methods
236(5)
12.3.1 Difference between Mobile Offshore Drilling Unit and permanent moorings
236(1)
12.3.2 General visual inspection
237(2)
12.3.3 Close-up visual inspection
239(1)
12.3.4 Nondestructive examination techniques
240(1)
12.3.5 Advanced three-dimensional imaging
240(1)
12.4 Inspection of mooring components
241(4)
12.4.1 Inspection of chain
241(2)
12.4.2 Inspection of wire rope
243(1)
12.4.3 Inspection of fiber rope
244(1)
12.4.4 Inspection of connecter and anchor
245(1)
12.5 Monitoring
245(2)
12.5.1 Regulatory requirements
246(1)
12.5.2 What and how to monitor
246(1)
12.6 Monitoring methods
247(2)
12.6.1 Method 1-monitoring visually
247(1)
12.6.2 Method 2-monitoring tension
248(1)
12.6.3 Method 3-monitoring vessel position
248(1)
12.7 Monitoring devices
249(3)
12.7.1 Load cell
250(1)
12.7.2 Inclinometer
250(1)
12.7.3 Global Positioning System-based system
251(1)
12.8 Questions
252(1)
References
252(3)
13 Mooring reliability 255(26)
13.1 Mooring failures around the world
256(5)
13.2 Probability of failure for permanent moorings
261(3)
13.2.1 Estimated Pf for permanent moorings
262(1)
13.2.2 System versus component failures (multiline vs single-line breaks)
263(1)
13.3 Failure spots for permanent moorings
264(1)
13.4 Probability of failure for temporary moorings
265(4)
13.4.1 Estimated Pffor mobile offshore drilling unit moorings
266(1)
13.4.2 Improving mobile offshore drilling unit mooring reliability
267(2)
13.5 Failure spots for temporary moorings
269(1)
13.6 Reliability of mooring components
270(3)
13.6.1 Percentage distribution of mooring failures by component type
270(2)
13.6.2 Percentage distribution of chain failures by cause
272(1)
13.7 Wide variety of failure mechanisms
273(4)
13.7.1 Deficient chain from manufacturing
274(1)
13.7.2 Chain with severe corrosion
274(1)
13.7.3 Fatigued chain due to out-of-plane bending
275(1)
13.7.4 Knotted chain due to twist
275(1)
13.7.5 Chain damaged from handling
276(1)
13.7.6 Operation issues
276(1)
13.8 Questions
277(1)
References
277(4)
14 Integrity management 281(18)
14.1 Mooring integrity management
282(2)
14.1.1 Managing mooring performance
282(1)
14.1.2 Assessing hazards and performing risk assessment
283(1)
14.2 Incident response
284(3)
14.2.1 Define response actions
285(1)
14.2.2 Include a sparing plan
286(1)
14.2.3 Predefine installation procedures and contracting plan
287(1)
14.2.4 Include procedures for readiness check of equipment
287(1)
14.3 Life extension
287(4)
14.3.1 Life extension for a floating facility and its mooring system
288(1)
14.3.2 Fitness assessment of mooring component
289(2)
14.4 Ways to improve mooring integrity
291(4)
14.4.1 Perform rigorous inspection and maintenance
291(2)
14.4.2 Equip with monitoring system
293(1)
14.4.3 Share lessons learned
294(1)
14.4.4 Improve codes and standards
294(1)
14.5 Questions
295(1)
References
296(3)
15 Mooring for floating wind turbines 299(18)
15.1 Concepts of floating offshore wind turbines
300(4)
15.1.1 History of concept development
300(1)
15.1.2 Spar-buoy type
301(1)
15.1.3 Semisubmersible type
301(1)
15.1.4 Tension leg platform type
302(1)
15.1.5 Comparison of concept types
303(1)
15.2 Mooring design
304(3)
15.2.1 Mooring type
304(1)
15.2.2 Mooring line material
305(1)
15.2.3 Anchor selection
306(1)
15.3 Mooring design criteria
307(1)
15.3.1 Design return period
307(1)
15.3.2 Optional redundancy
307(1)
15.3.3 Other requirements
308(1)
15.4 Mooring analysis
308(4)
15.4.1 Environmental forces and load cases
308(2)
15.4.2 Aerodynamic loads
310(1)
15.4.3 Time-domain mooring analysis
311(1)
15.5 Design considerations
312(2)
15.5.1 Fatigue
312(1)
15.5.2 Corrosion
313(1)
15.5.3 Installation
313(1)
15.5.4 Tensioning
313(1)
15.5.5 Overall project cost
313(1)
15.6 Questions
314(1)
References
314(3)
Index 317
Dr. Kai-Tung (KT) Ma is a principal advisor at a major operator. He has previously worked for a few consulting firms, has published many papers and patents, and is a fellow of SNAME. He earned his PhD in naval architecture from the University of California at Berkeley. He is an adjunct professor at National Taiwan University, and serves as chair and member for the API and ISO mooring committees, respectively. Dr. Yong Luo is the founder and president of his own engineering service company that supports the offshore energy industry. He previously worked for several large offshore companies. Dr. Luo is a visiting professor at Shanghai Jiao Tong University, China and Harbin Engineering University, China. He earned his PhD in ocean engineering from the University of Strathclyde, United Kingdom. Dr. Thomas Kwan is a mooring consultant. He previously worked for a major operator for over 20 years. From 1982 to 2006, he served as chair for the API mooring committee, leading the development of API RP-2SK, API RP-2I, and ISO 19901-7. He earned his PhD in structural engineering from the University of Houston, United States. Dr. Yongyan Wu is a senior principal naval architect at a major engineering company. He has published many technical papers and is a registered professional engineer in the state of Texas. He earned his PhD in ocean engineering from the University of Hawaii at Manoa, United States.