Atjaunināt sīkdatņu piekrišanu

Mosfet Modeling For Circuit Analysis And Design [Hardback]

(Univ Federal De Santa Catarina, Brazil), (Univ Federal De Santa Catarina, Brazil)
Citas grāmatas par šo tēmu:
  • Hardback
  • Cena: 184,76 €
  • Grāmatu piegādes laiks ir 3-4 nedēļas, ja grāmata ir uz vietas izdevniecības noliktavā. Ja izdevējam nepieciešams publicēt jaunu tirāžu, grāmatas piegāde var aizkavēties.
  • Daudzums:
  • Ielikt grozā
  • Piegādes laiks - 4-6 nedēļas
  • Pievienot vēlmju sarakstam
  • Bibliotēkām
Citas grāmatas par šo tēmu:
This is the first book dedicated to the next generation of MOSFET models. Addressed to circuit designers with an in-depth treatment that appeals to device specialists, the book presents a fresh view of compact modeling, having completely abandoned the regional modeling approach.Both an overview of the basic physics theory required to build compact MOSFET models and a unified treatment of inversion-charge and surface-potential models are provided. The needs of digital, analog and RF designers as regards the availability of simple equations for circuit designs are taken into account. Compact expressions for hand analysis or for automatic synthesis, valid in all operating regions, are presented throughout the book. All the main expressions for computer simulation used in the new generation compact models are derived.Since designers in advanced technologies are increasingly concerned with fluctuations, the modeling of fluctuations is strongly emphasized. A unified approach for both space (matching) and time (noise) fluctuations is introduced.
Foreword vii
Preface ix
List of Selected Symbols xix
Chapter 1 Introduction 1
1.1 MOS integrated circuits
1
1.2 Compact MOSFET models for circuit analysis and design
2
1.3 A brief history of compact MOS transistor models
3
Bibliography
5
Chapter 2 The MOS Capacitor 7
2.1 Equilibrium electron and hole concentrations
7
2.2 The field effect in bulk semiconductors
9
2.2.1 Fundamental considerations
9
2.2.2 Poisson-Boltzmann equation in bulk semiconductors
10
2.3 The ideal two-terminal MOS structure
14
2.3.1 Small signal equivalent capacitive circuit
17
2.3.2 Ideal C-V plots
21
2.3.3 Effect of work function difference
26
2.3.4 The flat-band voltage
29
2.4 The three-terminal MOS structure with uniformly doped substrate
32
2.4.1 Quasi-equilibrium electron and hole concentrations
32
2.4.2 Surface potential master equation
35
2.4.3 Small-signal equivalent capacitive circuit in inversion
38
2.4.4 Basic approximations for compact modeling
41
2.4.4.1 The charge-sheet approximation
41
2.4.4.2 The approximate linear relationship between inversion charge density and surface potential
43
2.4.5 The pinch-off voltage
45
2.4.6 The unified charge control model (UCCM)
47
2.4.7 Comparison between charge-sheet model and UCCM
49
2.5. Real C-V curves: Interface traps, polysilicon depletion, and quantum effects
51
2.5.1 Interface-trap capacitance
52
2.5.2 Polysilicon depletion
54
2.5.3 Quantum mechanical (QM) effects on the semiconductor capacitance
57
Bibliography
61
Problems
64
Chapter 3 The Long-Channel MOSFET: Theory and dc Equations 67
3.1 A brief history of MOSFET theory
67
3.2 MOSFET operation
71
3.3 The Pao-Sah exact I-V model
73
3.4 Compact surface potential MOSFET models
79
3.4.1 Linearized surface potential models
83
3.4.2 Brews-van de Wiele charge-sheet formula for the current
84
3.5 Charge control compact model
85
3.6 Comparison between models
86
3.7 Design-oriented MOSFET model
88
3.7.1 Forward and reverse components of the drain current
88
3.7.2 Asymptotic behavior of the drain current in weak and strong inversion
91
3.7.3 Universal dc characteristics
94
3.7.4 Small-signal transconductances
98
3.7.5 The transconductance-to-current ratio
101
3.7.6 Small-signal MOSFET model at low frequencies
103
Bibliography
105
Problems
107
Chapter 4 The Real MOS Transistor: de Models 113
4.1 Effective mobility
113
4.2 Velocity saturation
119
4.3 Saturation charge and saturation voltage
122
4.4 Channel length modulation
127
4.5 Effect of source and drain resistances
129
4.6 Ballistic transport
129
4.7 Short and narrow channel effects
131
4.7.1 Short-channel effect
131
4.7.2 Reverse short-channel effect
134
4.7.3 Narrow-channel effect
135
4.7.4 Drain-induced barrier lowering
137
4.7.5 Temperature effect on the threshold voltage
139
4.8 Impact of small geometry effects on transistor model
140
4.9 Benchmark tests for dc MOSFET models for circuit simulation
144
4.9.1 Series-parallel association of transistors
145
4.9.2 Gummel symmetry test
149
Bibliography
151
Problems
154
Chapter 5 Stored Charges and Capacitive Coefficients 157
5.1 Transient analysis of the MOS transistor
158
5.1.1 The continuity equation
158
5.1.2 Definitions of source and drain charges
159
5.2 Quasi-static charge-conserving model
163
5.2.1 Stored charges
163
5.2.1.1 Symbolic MOSFET model
164
5.2.1.2 Stored charge calculations
165
5.2.2 Transit time
170
5.2.3 Capacitive coefficients
171
5.2.3.1 Intrinsic small-signal models
173
5.2.3.2 Calculation of the capacitive coefficients
175
5.2.3.3 Charge conservation and transcapacitances
183
5.2.3.4 Intrinsic transition frequency
185
5.3 Charges and capacitances of the extrinsic transistor
188
5.4 Small-dimension effects on charges and capacitances
190
5.4.1 Effect of velocity saturation on stored charges
190
5.4.2 Effect of velocity saturation on capacitances
194
5.4.3 Other small-dimension effects on capacitances
199
Bibliography
200
Problems
201
Chapter 6 Mismatch Modeling 203
6.1 Introduction
203
6.2 Random mismatch in MOS transistors
204
6.3 Consistent model for drain current fluctuation
206
6.4 Number fluctuation mismatch model
207
6.5 Specific current mismatch
212
6.6 Mismatch model in terms of inversion level
213
6.7 Experimental results and discussion
215
Bibliography
222
Problems
224
Chapter 7 Noise in MOSFETs 227
7.1 Sources of noise
227
7.1.1 Thermal noise
227
7.1.2 Shot noise
229
7.1.3 Flicker noise
231
7.2 Noise modeling using the impedance field method
232
7.2.1 Thermal noise in MOSFETs
236
7.2.2 Flicker noise in MOSFETs
236
7.2.2.1 Measurement results
240
7.3 Consistency of noise models
243
7.4 Design-oriented noise models
246
7.4.1 Relationship between thermal noise and transconductance
246
7.4.2 Flicker noise in terms of inversion levels
247
7.4.3 The corner frequency
250
7.5 Small-dimension effects on MOSFET noise
251
7.5.1 Review of the effect of velocity saturation on the drain current
251
7.5.2 The impedance field for short channel MOSFETs
253
7.5.3 Drain current noise of short channel MOSFETs
255
Bibliography
260
Problems
262
Chapter 8 High-Frequency Models 265
8.1 Introduction
265
8.2 Non quasi-static operation of the MOSFET
266
8.3 Non-quasi-static small-signal model
267
8.4 The y-parameter model
275
8.5 Channel segmentation
280
8.6 Induced gate noise
281
Bibliography
290
Problems
292
Chapter 9 Gate and Bulk Currents 293
9.1 Gate tunneling current
293
9.1.1 Tunneling through a potential barrier
294
9.1.2 Compact model for tunneling in MOS structures
295
9.1.2.1 Impact frequency
297
9.1.2.2 Equations for the tunneling current
299
9.1.2.3 Comparison between models
301
9.1.2.4 Partition of the gate current into source and drain components
303
9.2 Bulk current
306
9.2.1 Gate induced drain leakage
306
9.2.2 Impact ionization current
308
9.2.2.1 Weak avalanche
308
9.2.2.2 Breakdown
313
Bibliography
315
Problems
317
Chapter 10 Advanced MOSFET Structures 319
10.1 Introduction
319
10.2 Deep submicron planar MOS transistor structures
320
10.3 Silicon-on-insulator (SOI) CMOS transistors
324
10.3.1 Pinch-off voltage calculation
334
10.4 Undoped surrounding-gate transistors
338
10.5 Multiple-gate transistors
343
Bibliography
345
Problems
348
Chapter 11 MOSFET Parameter Extraction 349
11.1 Introduction
349
11.2 Threshold voltage and short-channel effects
350
11.3 Specific current and effective channel length and width
355
11.4 Slope factor and subthreshold slope
357
11.5 Mobility degradation with transversal field
359
Bibliography
363
Problems
364
Chapter 12 Advanced MOSFET Models for Circuit Simulators 367
12.1 Surface potential- vs. inversion charge-based models
368
12.2 Charge-based models
369
12.2.1 The ACM model
370
12.2.2 The EKV model
373
12.2.3 The BSIM5 model
375
12.3 Surface potential models
376
12.3.1 The HiSIM model
378
12.3.2 MOS model 11
380
12.3.3 The SP model
382
Bibliography
383
Problems
386
Appendix A Electrostatics in One Dimension 387
Appendix B Electrostatics in Semiconductors 391
Appendix C Drift-diffusion Current Model 393
Appendix D Continuity Equations 397
Appendix E Basics of pn Junctions 399
E.1 Electrostatics in equilibrium
400
E.2 Electrostatics of forward- and reverse-biased junction
401
E.3 Quasi-Fermi potentials in the pn-junction
402
Appendix F Hall-Shockley-Read (HSR) Statistics 405
Appendix G Interface Trap Capacitance 409
Index 415