Atjaunināt sīkdatņu piekrišanu

E-grāmata: MPLS-Enabled Applications: Emerging Developments and New Technologies

4.33/5 (58 ratings by Goodreads)
(Juniper Networks), (Juniper Networks)
  • Formāts - PDF+DRM
  • Cena: 61,81 €*
  • * ši ir gala cena, t.i., netiek piemērotas nekādas papildus atlaides
  • Ielikt grozā
  • Pievienot vēlmju sarakstam
  • Šī e-grāmata paredzēta tikai personīgai lietošanai. E-grāmatas nav iespējams atgriezt un nauda par iegādātajām e-grāmatām netiek atmaksāta.
  • Bibliotēkām

DRM restrictions

  • Kopēšana (kopēt/ievietot):

    nav atļauts

  • Drukāšana:

    nav atļauts

  • Lietošana:

    Digitālo tiesību pārvaldība (Digital Rights Management (DRM))
    Izdevējs ir piegādājis šo grāmatu šifrētā veidā, kas nozīmē, ka jums ir jāinstalē bezmaksas programmatūra, lai to atbloķētu un lasītu. Lai lasītu šo e-grāmatu, jums ir jāizveido Adobe ID. Vairāk informācijas šeit. E-grāmatu var lasīt un lejupielādēt līdz 6 ierīcēm (vienam lietotājam ar vienu un to pašu Adobe ID).

    Nepieciešamā programmatūra
    Lai lasītu šo e-grāmatu mobilajā ierīcē (tālrunī vai planšetdatorā), jums būs jāinstalē šī bezmaksas lietotne: PocketBook Reader (iOS / Android)

    Lai lejupielādētu un lasītu šo e-grāmatu datorā vai Mac datorā, jums ir nepieciešamid Adobe Digital Editions (šī ir bezmaksas lietotne, kas īpaši izstrādāta e-grāmatām. Tā nav tas pats, kas Adobe Reader, kas, iespējams, jau ir jūsu datorā.)

    Jūs nevarat lasīt šo e-grāmatu, izmantojot Amazon Kindle.

MPLS Enabled Applications: Emerging Developments and New Technologies, Third Edition provides up-to-date coverage of the fast-moving developments within the field of technology.

With a foreword by Yakov Rekhter

"Here at last is a single, all encompassing resource where the myriad applications sharpen into a comprehensible text that first explains the whys and whats of each application before going on to the technical detail of the hows."
Kireeti Kompella, CTO Junos, Juniper Networks

The authoritative guide to MPLS, now in its Third edition, fully updated with brand new material!

MPLS is now considered the networking technology for carrying all types of network traffic, including voice telephony, real-time video, and data traffic. In MPLS-Enabled Applications, Third Edition, the authors methodically show how MPLS holds the key to network convergence by allowing operators to offer more services over a single physical infrastructure. The Third Edition contains more than 170 illustrations, new chapters, and more coverage, guiding the reader from the basics of the technology, though all its major VPN applications.

MPLS Enabled-Applications contains up-to-date coverage of:

  • The current status and future potential of all major MPLS applications, including L2VPN, L3VPN, pseudowires and VPLS.
  • A new chapter with up to date coverage of the MPLS transport profile, MPLS-TP.
  • MPLS in access networks and Seamless MPLS, the new architecture for extending MPLS into the access, discussed in depth for both the unicast and the multicast case.
  • Extensive coverage of multicast support in L3VPNs (mVPNs), explaining and comparing both the PIM/GRE and the next generation BGP/MPLS solutions, and including a new chapter on advanced topics in next generation multicast VPNs.
  • A new chapter on advanced protection techniques, including detailed discussion of 50 ms end-to-end service restoration.
  • Comprehensive coverage of the base technology, as well as the latest IETF drafts, including topics such as pseudowire redundancy, VPLS multihoming, IRB and P2MP pseudowires.

MPLS-Enabled Applications will provide those involved in the design and deployment of MPLS systems, as well as those researching the area of MPLS networks, with a thoroughly modern view of how MPLS is transforming the networking world.

"Essential new material for those trying to understand the next steps in MPLS."
—Adrian Farrel, IETF Routing Area Director

"MPLS-Enabled Applications takes a unique and creative approach in explaining MPLS concepts and how they are applied in practice to meet the needs of Enterprise and Service Provider networks. I consistently recommend this book to colleagues in the engineering, education and business community."
—Dave Cooper, Chief IP Technologist, Global Crossing Ltd

About the Authors xix
Foreword xxi
Preface xxv
Acknowledgements xxxi
Part One
1 Foundations
3(36)
1.1 Historical perspective
3(2)
1.2 Current trends
5(1)
1.3 MPLS mechanisms
6(29)
1.3.1 Forwarding plane mechanisms
7(4)
1.3.2 Control plane mechanisms
11(21)
1.3.3 Transport of IPv6 over an IPv4 MPLS core
32(3)
1.4 Conclusion
35(1)
1.5 References
35(1)
1.6 Further reading
36(1)
1.7 Study questions
36(3)
2 Traffic Engineering with MPLS (MPLS-TE)
39(28)
2.1 Introduction
39(1)
2.2 The business drivers
39(1)
2.3 Application scenarios
40(3)
2.4 Setting up traffic-engineered paths using MPLS-TE
43(8)
2.4.1 LSP priorities and preemption
43(1)
2.4.2 Information distribution-IGP extensions
44(2)
2.4.3 Path calculation-CSPF
46(3)
2.4.4 Path setup - RSVP extensions and admission control
49(2)
2.5 Using the traffic-engineered paths
51(3)
2.6 Deployment considerations
54(3)
2.6.1 Scalability
54(2)
2.6.2 Reservation granularity
56(1)
2.6.3 Routing challenges
57(1)
2.7 Using traffic engineering to achieve resource Optimization
57(4)
2.7.1 Autobandwidth-dealing with unknown bandwidth requirements
58(1)
2.7.2 Sharing links between RSVP and other traffic - dealing with unknown bandwidth availability
59(1)
2.7.3 Other methods for optimization of transmission resources in MPLS networks
60(1)
2.8 Offline path computation
61(3)
2.9 Conclusion
64(1)
2.10 References
65(1)
2.11 Further reading
65(1)
2.12 Study questions
65(2)
3 Protection and Restoration in MPLS Networks
67(46)
3.1 Introduction
67(1)
3.2 The business drivers
68(1)
3.3 Failure detection
69(1)
3.4 End-to-end protection
70(3)
3.4.1 Control over the traffic Row following a failure
71(1)
3.4.2 Requirement for path diversity
71(1)
3.4.3 Double-booking of resources
72(1)
3.4.4 Unnecessary protection
72(1)
3.4.5 Nondeterministic switchover delay
72(1)
3.5 Local protection using fast reroute
73(8)
3.5.1 Case (i): link protection, for the facility protection case
75(2)
3.5.2 Case (ii): link protection, for the 1:1 protection case
77(1)
3.5.3 Case (iii): node protection, for the facility protection case
78(1)
3.5.4 Case (iv): node protection, for the 1:1 protection case
79(2)
3.6 Link protection
81(8)
3.6.1 What happens before the failure
82(5)
3.6.2 What happens after the failure
87(2)
3.7 Node protection
89(2)
3.8 Additional constraints for the computation of the protection path
91(6)
3.8.1 Fate sharing
91(2)
3.8.2 Bandwidth protection
93(3)
3.8.3 Bandwidth protection and DiffServ
96(1)
3.9 Interaction of end-to-end protection and fast reroute
97(1)
3.10 Deployment considerations for local protection mechanisms
98(7)
3.10.1 Scalability considerations
98(3)
3.10.2 Evaluating a local protection implementation
101(2)
3.10.3 The cost of bandwidth protection
103(2)
3.11 IP and LDPFRR
105(5)
3.11.1 The tunnel-based approach
107(1)
3.11.2 The alternate-path approach
108(2)
3.12 Conclusion
110(1)
3.13 References
111(1)
3.14 Further reading
111(1)
3.15 Study questions
111(2)
4 MPLS DiffServ-TE
113(24)
4.1 Introduction
113(1)
4.2 The business drivers
114(1)
4.3 Application scenarios
115(2)
4.3.1 Limiting the proportion of traffic from a particular class on a link
115(2)
4.3.2 Maintaining relative proportions of traffic on links
117(1)
4.3.3 Providing guaranteed bandwidth services
117(1)
4.4 The DiffServ-TE solution
117(16)
4.4.1 Class types
117(1)
4.4.2 Path computation
118(3)
4.4.3 Path signaling
121(1)
4.4.4 Bandwidth constraint models
122(5)
4.4.5 Overbooking
127(2)
4.4.6 The DiffServ in DiffServ-TE
129(1)
4.4.7 Protection
130(1)
4.4.8 Tools for keeping traffic within its reservation limits
131(1)
4.4.9 Deploying the DiffServ-TE solution
132(1)
4.5 Extending the DiffServ-TE solution with multiclass LSPs
133(1)
4.6 Conclusion
134(1)
4.7 References
134(1)
4.8 Further reading
135(1)
4.9 Study questions
135(2)
5 Interdomain Traffic Engineering
137(26)
5.1 Introduction
137(1)
5.2 The business drivers
137(2)
5.3 Setting up interdomain TE LSPs
139(18)
5.3.1 Path setup
140(4)
5.3.2 Path computation
144(10)
5.3.3 Reoptimization
154(1)
5.3.4 Protection and fast reroute
155(2)
5.4 Interprovider challenges
157(1)
5.5 Comparison of the LSP setup methods
158(1)
5.6 Conclusion
159(1)
5.7 References
160(1)
5.8 Further reading
161(1)
5.9 Study questions
161(2)
6 MPLS Multicast
163(36)
6.1 Introduction
163(1)
6.2 The business drivers
164(1)
6.3 P2MP LSP mechanisms
165(11)
6.3.1 Forwarding plane mechanisms
165(2)
6.3.2 Control plane mechanisms
167(9)
6.4 LAN procedures for P2MP LSPs
176(2)
6.4.1 Upstream label allocation
177(1)
6.5 Coupling traffic into a P2MP LSP
178(3)
6.5.1 Coupling Layer 2 traffic into a P2MP LSP
179(1)
6.5.2 Coupling IP unicast traffic into a P2MP LSP
179(1)
6.5.3 Coupling IP multicast traffic into a P2MP LSP
180(1)
6.6 MPLS fast reroute
181(2)
6.7 Ingress redundancy for P2MP LSPs
183(1)
6.8 P2MP LSP hierarchy
184(3)
6.8.1 P2MP LSP hierarchy forwarding plane operation
186(1)
6.8.2 P2MP LSP hierarchy control plane operation
187(1)
6.9 Applications of point-to-multipoint LSPs
187(6)
6.9.1 Application of P2MPTE to broadcast TV distribution
188(3)
6.9.2 Application of P2MP LSPs to L3VPN multicast
191(2)
6.9.3 Application of P2MP LSPs to VPLS
193(1)
6.10 Conclusion
193(1)
6.11 References
193(2)
6.12 Study questions
195(4)
Part Two
7 Foundations of Layer 3 BGP/MPLS Virtual Private Networks
199(26)
7.1 Introduction
199(1)
7.2 The business drivers
200(1)
7.3 The overlay VPN model
201(1)
7.4 The peer VPN model
202(3)
7.5 Building the BGP/MPLS VPN solution
205(16)
7.5.1 VPN routing and forwarding tables (VRFs)
205(2)
7.5.2 Constrained route distribution
207(1)
7.5.3 VPN-IPv4 addresses and the route distinguisher (RD)
208(1)
7.5.4 The route target (RT)
209(6)
7.5.5 The solution so far - what is missing?
215(1)
7.5.6 VPN label
216(5)
7.6 Benefits of the BGP/MPLS VPN solution
221(1)
7.7 References
222(1)
7.8 Further reading
222(1)
7.9 Study questions
223(2)
8 Advanced Topics in Layer 3 BGP/MPLS Virtual Private Networks
225(30)
8.1 Introduction
225(1)
8.2 Routing between CE and PE
225(5)
8.3 Differentiated VPN treatment in the core
230(1)
8.4 Route reflectors and VPNs
231(4)
8.5 Scalability discussion
235(8)
8.5.1 Potential scaling bottlenecks
236(2)
8.5.2 The cost of growing the VPN network
238(5)
8.6 Convergence times in a VPN network
243(1)
8.6.1 Convergence time for a customer route change
243(1)
8.6.2 Convergence time for a failure in the provider's network
244(1)
8.7 Security issues
244(2)
8.7.1 Can traffic from one VPN `cross over' into another VPN?
245(1)
8.7.2 Can a security attack on one VPN affect another VPN?
245(1)
8.7.3 Can a security attack against the service provider's infrastructure affect the VPN service?
246(1)
8.8 QoS in a VPN scenario
246(2)
8.9 IPv6 VPNs
248(3)
8.10 Conclusion
251(1)
8.11 References
251(1)
8.12 Further reading
252(1)
8.13 Study questions
252(3)
9 Hierarchical and Inter-AS VPNs
255(20)
9.1 Introduction
255(1)
9.2 Carriers' carrier - service providers as VPN customers
256(10)
9.2.1 ISP as a VPN customer
257(5)
9.2.2 VPN service provider as a VPN customer - hierarchical VPN
262(4)
9.3 Multi-AS backbones
266(5)
9.3.1 Option A: VRF-to-VRF connections at the ASBR
266(2)
9.3.2 Option B: EBGP redistribution of labeled VPN-IPv4 routes
268(1)
9.3.3 Option C: muitihop EBGP redistribution of labeled VPN-IPv4 routes between the source and destination AS, with EBGP redistribution of labeled IPv4 routes from one AS to the neighboring AS
269(2)
9.4 Interprovider QoS
271(1)
9.5 Conclusion
272(1)
9.6 References
272(1)
9.7 Further reading
273(1)
9.8 Study questions
273(2)
10 Multicast in a Layer 3 VPN
275(36)
10.1 Introduction
275(1)
10.2 The business drivers
276(2)
10.3 mVPN - problem decomposition
278(1)
10.4 The original multicast solution-PIM/GRE mVPN (draft-rosen)
279(7)
10.4.1 PIM/GRE mVPN - routing information distribution using PIM C-instances
280(1)
10.4.2 PIM/GRE mVPN - carrying multicast traffic across the core using multicast distribution trees
281(2)
10.4.3 Properties of the PIM/GRE mVPN solution
283(3)
10.5 NG multicast for L3VPN - BGP/MPLS mVPN (NG mVPN)
286(17)
10.5.1 Requirements for support of PIM-SM SSM in an mVPN
286(1)
10.5.2 BGP/MPLS mVPN - carrying multicast mVPN routing information using C-multicast routes
287(5)
10.5.3 BGP/MPLS mVPN - carrying traffic across the provider network using inter-PE MPLS tunnels
292(1)
10.5.4 BGP/MPLS mVPN - inter-PE tunnels -inclusive and selective tunnels
292(2)
10.5.5 BGP/MPLS mVPN - carrying traffic from several mVPNs onto the same inter-PE tunnel
294(1)
10.5.6 BGP/MPLS mVPN - creating inter-PE tunnels using BGP autodiscovery routes
295(4)
10.5.7 Requirements for support of PIM ASM in an mVPN
299(1)
10.5.8 BGP/MPLS mVPN - carrying mVPN active source information using BGP source active autodiscovery routes
300(3)
10.6 Comparison of PIM/GRE and BGP/MPLS mVPNs
303(4)
10.6.1 VPN model used
303(1)
10.6.2 Protocol used in the control plane
304(1)
10.6.3 Data-plane mechanisms
305(1)
10.6.4 Service provider network as a `LAN'
306(1)
10.6.5 Deployment considerations
306(1)
10.7 Conclusion
307(1)
10.8 References
307(1)
10.9 Further reading
308(1)
10.10 Study questions
309(2)
11 Advanced Topics in BGP/MPLS mVPNs
311(30)
11.1 Introduction
311(1)
11.2 BGP/MPLS mVPN - inter-AS operations
311(5)
11.3 Support of PIM DM in BGP/MPLS mVPN
316(1)
11.4 Discovering the RP - auto-RP and BSR support in BGP/MPLS mVPN
317(2)
11.5 Implementing extranets in BGP/MPLS mVPN
319(3)
11.6 Transition from draft-rosen to BGP/MPLS mVPNs
322(3)
11.7 Scalability discussion
325(3)
11.7.1 PIM/GRE mVPN control plane scaling
325(1)
11.7.2 BGP/MPLS mVPN control plane scaling
326(2)
11.8 Achieving multicast high availability with BGP/MPLS mVPN
328(7)
11.8.1 Live-Standby multicast delivery using BGP/MPLS mVPN
329(3)
11.8.2 Live-Live multicast delivery using BGP/MPLS mVPN
332(3)
11.8.3 Comparison of the Live-Live and Live-Standby multicast high-availability schemes
335(1)
11.9 Internet multicast service using the BGP/MPLS mVPN technology
335(2)
11.10 Conclusion
337(1)
11.11 References
338(1)
11.12 Study questions
338(3)
12 Layer 2 Transport over MPLS
341(32)
12.1 Introduction
341(1)
12.2 The business drivers
341(3)
12.3 Comparison of layer 2 VPNs and layer 3 VPNs
344(1)
12.4 Principles of layer 2 transport over MPLS
345(2)
12.5 Forwarding plane
347(4)
12.5.1 ATM cell
349(1)
12.5.2 ATM AAL5
349(1)
12.5.3 Frame relay
350(1)
12.5.4 Ethernet
350(1)
12.6 Control plane operation
351(9)
12.6.1 Original LDP signaling scheme
351(2)
12.6.2 BGP-based signaling and autodiscoveiy scheme
353(4)
12.6.3 LDP signaling with BGP autodiscovery
357(1)
12.6.4 Comparison of BGP and LDP approaches to Layer 2 transport over MPLS
358(2)
12.7 Admission control of layer 2 connections into Network
360(1)
12.8 Failure notification mechanisms
361(1)
12.9 Multi-homing
362(3)
12.9.1 BGP case
362(2)
12.9.2 LDP case
364(1)
12.10 Layer 2 interworking
365(1)
12.11 Circuit cross connect (CCC)
365(1)
12.12 Point-to-multipoint Layer 2 transport
366(2)
12.12.1 Point-to-multipoint CCC
367(1)
12.12.2 Layer 2 Multicast VPNs
367(1)
12.13 Other applications of Layer 2 transport
368(2)
12.14 Conclusion
370(1)
12.15 References
370(1)
12.16 Study questions
371(2)
13 Virtual Private LAN Service
373(50)
13.1 Introduction
373(1)
13.2 The business drivers
373(2)
13.3 VPLS mechanism overview
375(4)
13.4 Forwarding plane mechanisms
379(5)
13.4.1 Forwarding of unicast frames
379(3)
13.4.2 Broadcast and multicast frames
382(2)
13.5 Control plane mechanisms
384(22)
13.5.1 LDP-based signaling
384(5)
13.5.2 BGP signaling and autodiscovery
389(7)
13.5.3 Comparison of LDP and BGP for VPLS control plane implementation
396(3)
13.5.4 IGMP and PIM snooping
399(2)
13.5.5 Use of multicast trees in VPLS
401(5)
13.6 LDP and BGP interworking for VPLS
406(7)
13.7 Interprovider Option E for VPLS
413(3)
13.7.1 Comparison of interprovider schemes for VPLS
415(1)
13.8 Operational considerations for VPLS
416(2)
13.8.1 Number of MAC addresses per customer
416(1)
13.8.2 Limiting broadcast and multicast traffic
417(1)
13.8.3 Policing of VPLS traffic
417(1)
13.8.4 VPLS with Integrated Routing and Bridging (IRB)
417(1)
13.8.5 Learning mode
417(1)
13.9 Conclusion
418(1)
13.10 References
419(1)
13.11 Study questions
419(4)
Part Three
14 Advanced Protection and Restoration: Protecting the Service
423(20)
14.1 Introduction
423(1)
14.2 The business drivers
423(2)
14.3 Failure scenarios
425(1)
14.4 Existing solutions
426(7)
14.4.1 Single homed CE
426(1)
14.4.2 Dual-homed CE
427(5)
14.4.3 Analyzing existing dual-homing solutions
432(1)
14.5 Protecting the egress - local protection solution
433(7)
14.5.1 Protecting against an attachment circuit failure in a pseudowire scenario - edge protection virtual circuit
435(2)
14.5.2 Protecting against an egress PE failure in an L3VPN scenario
437(3)
14.6 Conclusion
440(1)
14.7 References
440(1)
14.8 Further reading
441(1)
14.9 Study questions
441(2)
15 MPLS Management
443(36)
15.1 Introduction
443(1)
15.2 Management - why and what
443(2)
15.3 Detecting and troubleshooting failures
445(22)
15.3.1 Reporting and handling nonsilent failures
445(1)
15.3.2 Detecting silent failures-MPLS OAM
446(15)
15.3.3 Troubleshooting failures
461(6)
15.4 Configuration errors
467(6)
15.4.1 Preventing configuration errors
467(2)
15.4.2 Detecting and reporting misconfigurations
469(4)
15.5 Visibility
473(1)
15.6 Conclusion
474(1)
15.7 References
475(1)
15.8 Further reading
476(1)
15.9 Study questions
476(3)
16 MPLS in Access Networks and Seamless MPLS
479(30)
16.1 Introduction
479(1)
16.2 The business drivers
479(7)
16.2.1 The transition from legacy access to Ethernet access
480(3)
16.2.2 MPLS as the technology choice for the Ethernet access network
483(3)
16.3 Models for MPLS deployment in access networks
486(5)
16.4 Seamless MPLS Mechanisms
491(16)
16.4.1 Extending MPLS to the Access Node
491(2)
16.4.2 Seamless MPLS scaling
493(4)
16.4.3 Scaling analysis of Seamless MPLS
497(4)
16.4.4 Seamless MPLS for multicast
501(6)
16.5 Conclusions
507(1)
16.6 References
507(1)
16.7 Study questions
508(1)
17 MPLS Transport Profile (MPLS-TP)
509(22)
17.1 Introduction
509(1)
17.2 The business drivers
509(3)
17.3 Requirements for a transport profile for MPLS
512(4)
17.3.1 Characteristics of transport networks
513(1)
17.3.2 Requirements and architectural goals of MPLS-TP
514(2)
17.4 MPLS-TP functionality
516(6)
17.4.1 MPLS-TP as a subset of MPLS
516(1)
17.4.2 MPLS-TP resilience functions
517(1)
17.4.3 MPLS-TP OAM functions
518(4)
17.5 Deployment considerations
522(4)
17.6 Misconceptions about MPLS-TP
526(1)
17.7 Conclusion
527(1)
17.8 References
527(2)
17.9 Study questions
529(2)
18 Conclusions
531(16)
18.1 Introduction
531(2)
18.2 Network convergence
533(3)
18.3 Interaction with client edge equipment
536(2)
18.4 Interprovider capability
538(1)
18.5 MPLS in the data communications network (DCN)
539(1)
18.6 MPLS in mobile networks
540(2)
18.7 MPLS in the enterprise
542(3)
18.8 MPLS in the transport
545(1)
18.9 Final remarks
545(1)
18.10 References
546(1)
Appendix A Selected Backhaul Scenarios in MPLS-Based Access Networks 547(12)
Appendix B MPLS Resources 559(2)
Appendix C Solutions to Selected Study Questions 561(14)
Appendix D Acronyms 575(12)
Index 587
Ina Minei is a network protocols engineer at Juniper Networks whose focus is MPLS protocols and applications, DiffServ-aware traffic engineering and network convergence. She has helped to implement these and other features into the JUNOS operating system. She is active in industry forums, has presented MPLS tutorials at the North American Network Operators' Group conference and is a regular contributor to the IETF. She is the author of Juniper Networks' whitepaper on Diffserv-aware traffic engineering. Prior to joining Juniper Networks, she worked for Cisco Systems on the development of a next generation router operating system. Julian Lucek has worked with the Photonics Research Department at British Telecom where he co-built the world's first all-optical regenerator before moving into the IP field to evaluate new routing platforms. His current post is that of Consulting Engineer for Juniper Networks working with major Service Providers on MPLS deployments. He is the author of many published papers in the field of communications technology and holds several patents in that area.