Atjaunināt sīkdatņu piekrišanu

Multi-Agent-Based Simulation XXV: 25th International Workshop, MABS 2024, Auckland, New Zealand, May 6, 2024, Revised Selected Papers [Mīkstie vāki]

Edited by , Edited by
  • Formāts: Paperback / softback, 99 pages, height x width: 235x155 mm, 24 Illustrations, color; 5 Illustrations, black and white; IX, 99 p. 29 illus., 24 illus. in color., 1 Paperback / softback
  • Sērija : Lecture Notes in Artificial Intelligence 15583
  • Izdošanas datums: 06-Apr-2025
  • Izdevniecība: Springer International Publishing AG
  • ISBN-10: 3031880161
  • ISBN-13: 9783031880162
  • Mīkstie vāki
  • Cena: 46,91 €*
  • * ši ir gala cena, t.i., netiek piemērotas nekādas papildus atlaides
  • Standarta cena: 55,19 €
  • Ietaupiet 15%
  • Grāmatu piegādes laiks ir 3-4 nedēļas, ja grāmata ir uz vietas izdevniecības noliktavā. Ja izdevējam nepieciešams publicēt jaunu tirāžu, grāmatas piegāde var aizkavēties.
  • Daudzums:
  • Ielikt grozā
  • Piegādes laiks - 4-6 nedēļas
  • Pievienot vēlmju sarakstam
  • Formāts: Paperback / softback, 99 pages, height x width: 235x155 mm, 24 Illustrations, color; 5 Illustrations, black and white; IX, 99 p. 29 illus., 24 illus. in color., 1 Paperback / softback
  • Sērija : Lecture Notes in Artificial Intelligence 15583
  • Izdošanas datums: 06-Apr-2025
  • Izdevniecība: Springer International Publishing AG
  • ISBN-10: 3031880161
  • ISBN-13: 9783031880162

This book constitutes the refereed proceedings of the 25th International Workshop on Multi-Agent-Based Simulation XXV, MABS 2024, held in Auckland, New Zealand, on May 6, 2024.

The 7 full papers included in this book were carefully reviewed and selected from 11 submissions. They are organized in topical sections as follows: MABS methodology and tools; MABS education; and MABS applications.

.- MABS Methodology and Tools.


.- Creating a Serious Game on top of an Agent-Based Simulation, an applied
case to crisis management and population evacuation.


.- GENSIMO A Generic Framework for Modelling Social Insurance Systems.


.- Are Low Emission Zones Effective in Reducing Emissions and Ambient Air
Pollution?.


.- MABS Education.


.- Teaching Agent-based Modeling for Simulating Social Systems A
Research-based Learning Approach.


.- MABS Applications.


.- KEMASS: Knowledge-Enhanced Multi-Agent simulation for energy Scheduling
Support.


.- Inverse Generative Approach for Identifying Agent-Based Models from
Stochastic Primitives.


.- Inferring pedestrian decision-making through inverse reinforcement
learning.