Atjaunināt sīkdatņu piekrišanu

E-grāmata: Multi-Carrier Communication Systems with Examples in MATLAB: A New Perspective

  • Formāts: 308 pages
  • Izdošanas datums: 05-Jan-2016
  • Izdevniecība: CRC Press Inc
  • Valoda: eng
  • ISBN-13: 9781498735346
  • Formāts - PDF+DRM
  • Cena: 66,36 €*
  • * ši ir gala cena, t.i., netiek piemērotas nekādas papildus atlaides
  • Ielikt grozā
  • Pievienot vēlmju sarakstam
  • Šī e-grāmata paredzēta tikai personīgai lietošanai. E-grāmatas nav iespējams atgriezt un nauda par iegādātajām e-grāmatām netiek atmaksāta.
  • Formāts: 308 pages
  • Izdošanas datums: 05-Jan-2016
  • Izdevniecība: CRC Press Inc
  • Valoda: eng
  • ISBN-13: 9781498735346

DRM restrictions

  • Kopēšana (kopēt/ievietot):

    nav atļauts

  • Drukāšana:

    nav atļauts

  • Lietošana:

    Digitālo tiesību pārvaldība (Digital Rights Management (DRM))
    Izdevējs ir piegādājis šo grāmatu šifrētā veidā, kas nozīmē, ka jums ir jāinstalē bezmaksas programmatūra, lai to atbloķētu un lasītu. Lai lasītu šo e-grāmatu, jums ir jāizveido Adobe ID. Vairāk informācijas šeit. E-grāmatu var lasīt un lejupielādēt līdz 6 ierīcēm (vienam lietotājam ar vienu un to pašu Adobe ID).

    Nepieciešamā programmatūra
    Lai lasītu šo e-grāmatu mobilajā ierīcē (tālrunī vai planšetdatorā), jums būs jāinstalē šī bezmaksas lietotne: PocketBook Reader (iOS / Android)

    Lai lejupielādētu un lasītu šo e-grāmatu datorā vai Mac datorā, jums ir nepieciešamid Adobe Digital Editions (šī ir bezmaksas lietotne, kas īpaši izstrādāta e-grāmatām. Tā nav tas pats, kas Adobe Reader, kas, iespējams, jau ir jūsu datorā.)

    Jūs nevarat lasīt šo e-grāmatu, izmantojot Amazon Kindle.

Detailing the advantages and limitations of multi-carrier communication, this book proposes possible solutions for these limitations. Multi-Carrier Communication Systems with Examples in MATLAB®: A New Perspective addresses the two primary drawbacks of orthogonal frequency division multiplexing (OFDM) communication systems: the high sensitivity to carrier frequency offsets and phase noise, and the high peak-to-average power ratio (PAPR) of the transmitted signals.

Presenting a new interleaving scheme for multicarrier communication, the book starts with a detailed overview of multi-carrier systems such as OFDM, multi-carrier code division multiple access (MC-CDMA), and single-carrier frequency division multiple access (SC-FDMA) systems. From there, it proposes a new way to deal with the frequency-selective fading channel: the single-carrier with frequency domain equalization (SC-FDE) scheme.

The second part of the book examines the performance of the continuous phase modulation (CPM)-based OFDM (CPM-OFDM) system. It proposes a CPM-based single-carrier frequency domain equalization (CPM-SC-FDE) structure for broadband wireless communication systems.

In the third part of the book, the author proposes a chaotic interleaving scheme for both CPM-OFDM and the CPM-SC-FDE systems. A comparison between the proposed chaotic interleaving and the conventional block interleaving is also performed in this part.

The final part of the book presents efficient image transmission techniques over multi-carrier systems such as OFDM, MC-CDMA, and SC-FDMA. It details a new approach for efficient image transmission over OFDM and MC-CDMA systems using chaotic interleaving that transmits images over wireless channels efficiently.

The book studies the performance of discrete cosine transform-based single-carrier frequency division multiple access (DCT-SC-FDMA) with image transmission. It also proposes a CPM-based DCT-SC-FDMA structure for efficient image transmission.

The book includes MATLAB® simulations along with MATLAB code so you can practice carrying out your own extensive simulations.
Preface ix
Acknowledgments xiii
Author xv
List of Abbreviations
xvii
List of Symbols
xxi
Part I
Chapter 1 Introduction
3(14)
1.1 Orthogonal Frequency Division Multiplexing
3(2)
1.1.1 OFDM Advantages
4(1)
1.1.2 Problems Associated with OFDM
4(1)
1.2 SC-FDE System
5(1)
1.3 MC-CDMA System
6(1)
1.4 Single-Carrier Frequency Division Multiple Access System
6(1)
1.4.1 Comparison between OFDM and SC-FDMA
6(1)
1.5 Image Transmission
7(6)
1.5.1 Image Formation
8(1)
1.5.2 Image Definition
8(1)
1.5.2.1 Analog Image
9(1)
1.5.2.2 Digital Image
9(2)
1.5.3 Peak Signal-to-Noise Ratio
11(1)
1.5.4 Applications That Need Image Transmission
11(2)
1.6 Book Objectives and Contributions
13(1)
1.7
Chapter Outlines
14(3)
Chapter 2 Basic Principles of Multi-Carrier Communication Systems
17(28)
2.1 Introduction
17(1)
2.2 Basic Principles of OFDM
17(12)
2.2.1 Orthogonality
19(2)
2.2.2 Guard Time and Cyclic Prefix Extension
21(2)
2.2.3 Time Domain Representation of the OFDM Signal
23(2)
2.2.4 Discrete Time Domain Representation of the OFDM Signal
25(2)
2.2.5 OFDM System Block Diagram
27(1)
2.2.5.1 Modulation
27(1)
2.2.5.2 Serial to Parallel Conversion
28(1)
2.3 Basic Principles of the SC-FDE System
29(1)
2.4 Basic Principles of the MC-CDMA System
30(4)
2.4.1 Signal Structure
30(2)
2.4.2 Transmitted Signal
32(1)
2.4.3 Received Signal
33(1)
2.4.4 Advantages of MC-CDMA
33(1)
2.5 PAPR Problem
34(3)
2.5.1 Cumulative Distribution Function of PAPR
35(2)
2.6 Effects of Nonlinear Power Amplifier
37(8)
2.6.1 PAPR Reduction Techniques
40(2)
2.6.2 CPM-OFDM System
42(3)
Chapter 3 MIMO-OFDM Space-Time Block Coding Systems
45(14)
3.1 Introduction
45(1)
3.2 Overview of MIMO Systems
45(3)
3.2.1 Spatial Diversity in MIMO Systems
46(1)
3.2.2 Spatial Multiplexing in MIMO Systems
47(1)
3.3 MIMO System Model
48(2)
3.3.1 MIMO System Capacity
49(1)
3.4 Space-Time Block Codes
50(7)
3.4.1 Alamouti Space-Time Code
51(3)
3.4.2 Alamouti Scheme with Multiple Receive Antennas
54(3)
3.5 MIMO-OFDM Systems
57(2)
3.5.1 MIMO-OFDM System Model
57(2)
Chapter 4 PAPR Reduction Using Selective Mapping Scheme
59(30)
4.1 Introduction
59(1)
4.2 PAPR of the MIMO-OFDM Signals
60(1)
4.2.1 System Description and PAPR Definition
60(1)
4.3 Selective Mapping Schemes
61(5)
4.3.1 SISO-SLM Scheme
62(1)
4.3.2 MIMO-SLM Schemes
63(1)
4.3.2.1 i-SLM Scheme
63(1)
4.3.2.2 d-SLM Scheme
64(1)
4.3.2.3 Proposed s-SLM Scheme
64(2)
4.4 Comparison between Different SLM Schemes
66(1)
4.4.1 Number of SI Bits
66(1)
4.4.2 Bandwidth Degradation
66(1)
4.5 Performance Analysis of Different SLM Schemes
67(1)
4.6 Results and Discussion
68(3)
4.7 PAPR with Unequal Power Distribution
71(4)
4.8 Proposed RC-SLM Scheme
75(9)
4.8.1 Computational Complexity Comparison
78(3)
4.8.2 Simulation Results and Discussion
81(3)
4.9 Summary and Conclusions
84(5)
Part II
Chapter 5 Performance Evaluation of the OFDM and SC-FDE Systems Using Continuous Phase Modulation
89(20)
5.1 Introduction
89(1)
5.2 CPM-OFDM System Model
90(4)
5.3 Frequency Domain Equalizer Design
94(1)
5.4 Proposed CPM-SC-FDE System Model
95(1)
5.5 Phase Demodulator
96(2)
5.6 Spectral Efficiency and Multipath Diversity of CPM Signals
98(1)
5.7 Numerical Results and Discussion
99(5)
5.8 Summary and Conclusions
104(5)
Part III
Chapter 6 Chaotic Interleaving Scheme for the CPM-OFDM and CPM-SC-FDE Systems
109(22)
6.1 Introduction
109(1)
6.2 Proposed CPM-OFDM System with Chaotic Interleaving
110(2)
6.3 Proposed CPM-SC-FDE System with Chaotic Interleaving
112(1)
6.4 Interleaving Mechanisms
112(4)
6.4.1 Block Interleaving Mechanism
114(1)
6.4.2 Proposed Chaotic Interleaving Mechanism
114(2)
6.5 Equalizer Design
116(2)
6.6 Numerical Results and Discussion
118(10)
6.6.1 Proposed CPM-OFDM System Results
119(4)
6.6.2 Proposed CPM-SC-FDE System Results
123(5)
6.7 Summary and Conclusions
128(3)
Part IV
Chapter 7 Efficient Image Transmission over OFDM- and MC-CDMA-Based Systems
131(24)
7.1 Introduction
131(2)
7.2 OFDM System Model for Image Transmission
133(2)
7.3 MC-CDMA System Model for Image Transmission
135(2)
7.4 Linear Equalization
137(1)
7.5 Simulation Results and Discussion
138(15)
7.5.1 Simulation Results for the OFDM System
138(2)
7.5.2 Simulation Results for the MC-CDMA System
140(13)
7.6 Summary and Conclusions
153(2)
Chapter 8 Efficient Image Transmission over SC-FDMA-Based Systems
155(26)
8.1 Introduction
155(2)
8.2 Image Transmission over the SC-FDMA System
157(1)
8.3 Conventional QPSK-Based DCT-SC-FDMA Structure
157(3)
8.4 DFT-Based SC-FDMA Structure
160(2)
8.5 SC-FDMA System with Chaotic Interleaving
162(1)
8.6 CPM-Based SC-FDMA Structures
162(4)
8.6.1 CPM-Based DFT-SC-FDMA Structure
162(4)
8.6.2 CPM-Based DCT-SC-FDMA Structure
166(1)
8.7 Equalizer Design
166(1)
8.8 Simulation Results and Discussions
166(5)
8.9 Summary and Conclusions
171(10)
Appendix A Matlab® Simulation Codes for
Chapters 1 through 4
181(52)
Appendix B Matlabreg; Simulation Codes for
Chapters 5 through 8
233(36)
References 269(8)
Index 277
Dr. Emad S. Hassan earned his BSc (Honors), MSc, and PhD from the Electronics and Electrical Communications Engineering Department, Faculty of Electronic Engineering, Menoufia University, Egypt, in 2003, 2006, and 2010, respectively. In 2008, he joined the Communications Research Group at Liverpool University, United Kingdom, as a visiting researcher to complete his PhD research.

Dr. Hassan has been a full-time demonstrator (20032006) and assistant lecturer (20072010) at the Faculty of Electronic Engineering, Menoufia University. He was a visitor researcher at University of Liverpool, (20082009), a teaching assistant at the University of Liverpool (20082009), and a part-time lecturer at several private engineering universities in Egypt (20102011). He co-supervises many MSc and PhD students (2010present).

Dr. Hassan is currently an assistant professor at the Electronics and Electrical Communications Engineering Department, Faculty of Electronic Engineering, Menoufia University, Egypt.