Atjaunināt sīkdatņu piekrišanu

E-grāmata: Multi-Carrier Technologies for Wireless Communication

  • Formāts: PDF+DRM
  • Izdošanas datums: 06-Jul-2006
  • Izdevniecība: Springer
  • Valoda: eng
  • ISBN-13: 9780306473081
  • Formāts - PDF+DRM
  • Cena: 154,06 €*
  • * ši ir gala cena, t.i., netiek piemērotas nekādas papildus atlaides
  • Ielikt grozā
  • Pievienot vēlmju sarakstam
  • Šī e-grāmata paredzēta tikai personīgai lietošanai. E-grāmatas nav iespējams atgriezt un nauda par iegādātajām e-grāmatām netiek atmaksāta.
  • Formāts: PDF+DRM
  • Izdošanas datums: 06-Jul-2006
  • Izdevniecība: Springer
  • Valoda: eng
  • ISBN-13: 9780306473081

DRM restrictions

  • Kopēšana (kopēt/ievietot):

    nav atļauts

  • Drukāšana:

    nav atļauts

  • Lietošana:

    Digitālo tiesību pārvaldība (Digital Rights Management (DRM))
    Izdevējs ir piegādājis šo grāmatu šifrētā veidā, kas nozīmē, ka jums ir jāinstalē bezmaksas programmatūra, lai to atbloķētu un lasītu. Lai lasītu šo e-grāmatu, jums ir jāizveido Adobe ID. Vairāk informācijas šeit. E-grāmatu var lasīt un lejupielādēt līdz 6 ierīcēm (vienam lietotājam ar vienu un to pašu Adobe ID).

    Nepieciešamā programmatūra
    Lai lasītu šo e-grāmatu mobilajā ierīcē (tālrunī vai planšetdatorā), jums būs jāinstalē šī bezmaksas lietotne: PocketBook Reader (iOS / Android)

    Lai lejupielādētu un lasītu šo e-grāmatu datorā vai Mac datorā, jums ir nepieciešamid Adobe Digital Editions (šī ir bezmaksas lietotne, kas īpaši izstrādāta e-grāmatām. Tā nav tas pats, kas Adobe Reader, kas, iespējams, jau ir jūsu datorā.)

    Jūs nevarat lasīt šo e-grāmatu, izmantojot Amazon Kindle.

This book explains how a common multi-carrier platform is being designed for DS-CDMA, TDMA, OFDM, and MC-CDMA systems. Findings are presented which show how this multi-carrier platform enhances network capacity and probability of error performance. After a brief introduction to the wireless world, chapters overview existing multi-carrier technologies and detail how the proposed technology will enhance them. Each chapter provides necessary background and describes the underlying signaling scheme, the transmitter and receiver models, and key performance results. A final chapter introduces a novel way to implement an antenna array system alongside multi-carrier systems. Nassar founded the laboratory for Research in Advanced Wireless Communications at Colorado State University. Annotation c. Book News, Inc., Portland, OR (booknews.com)

Multi-carrier technologies have emerged as important instruments in telecommunications. OFDM is in the forefront, with its adoption by the IEEE 802.11 standards committee and the European HYPERLAN standards group. Following OFDM, MC-CDMA is also demonstrating considerable promise when compared to competing technologies. According to the authors, these technologies are just the beginning in the coming multi-carrier revolution. In Multi-Carrier Technologies for Wireless Communication, the authors explain how a common multi-carrier platform is being designed for DS-CDMA, TDMA, OFDM and MC-CDMA systems. Findings are presented which show how this multi-carrier platform enhances network capacity and probability of error performance.Specific results include (1) innovation in multi-carrier technologies that are enabling them to become an integral part of TDMA and DS-CDMA systems; and (2) the design of multi-carrier systems to overcome PAPR problems (in, e.g., OFDM). Multi-Carrier Technologies for Wireless Communication is an important book for engineers who work with DS-CDMA, TDMA, OFDM, or MC-CDMA systems, and are seeking new ways of exploiting the wireless medium based on a "smarter" signal processing.
Introduction
1(4)
Multi-Carrier Technology and Carrier Interferometry: A Quantum Leap?
1(1)
Unification
2(3)
Overview of Multi-Carrier Technologies
5(36)
Introduction
5(1)
Multi-Carrier Technologies: Past and Present
6(10)
OFDM
6(2)
Coded OFDM
8(4)
MC-CDMA
12(4)
Recap
16(1)
The Carrier Interferometry (CI) Approach
16(7)
The CI Signal
17(3)
Orthogonality Properties of the CI Signal
20(1)
Pseudo-Orthogonality Properties of CI Signals
21(2)
CI/MC-CDMA: The Application of the CI Signal to MC-CDMA
23(1)
CI/TDMA: Multi-Carrier Implementations of TDMA and the Demise of the Equalizer
24(5)
CI/DS-CDMA: A Multi-Carrier Implementation of DS-CDMA and the Demise of the RAKE receiver
29(4)
CI/OFDM: Increasing Performance and Throughput in OFDM and Eliminating the PAPR Problem
33(4)
Summary
37(4)
High-Performance High-Capacity MC-CDMA for Future Generations: The CI Approach
41(34)
Introduction
42(2)
CI/MC-CDMA Signaling and Transmitter Model
44(5)
Channel Model
49(1)
Receiver Structures
50(2)
Performance Results
52(6)
Perfect Synchronization
52(1)
Phase Jitter
53(2)
Frequency Offset
55(3)
Crest Factor Considerations in CI/MC-CDMA
58(6)
Downlink Crest Factor
60(1)
Uplink Crest Factor
60(2)
CF Reduction Technique
62(2)
Conclusions
64(11)
Determining the Phases Minimizing Root Mean Square Correlation
65(1)
How to Generate Correlated Rayleigh Envelopes for Use in Simulations
66(3)
Derivation of MMSE Combiner in CI/MC-CDMA Receeiver
69(6)
High Performance, High Throughput TDMA via Multi-Carrier Implementations
75(14)
Introduction
75(3)
Overview of TDMA and GSM
75(2)
Overview of the CI Approach
77(1)
Introducing CI to TDMA
77(1)
Cl Pulse Shaping in TDMA
78(3)
Essentials
78(2)
CI Pulse Shapes for Doubling Throughput
80(1)
Bandwidth Efficiency of CI/TDMA
81(1)
Channel Model
81(1)
CI/TDMA Receiver
82(1)
Performance Results
83(4)
Conclusions
87(2)
High-Performance, High-Capacity DS-CDMA via Multicarrier Implementation
89(36)
Introduction
90(1)
Review of DS-CDMA
91(6)
Introduction
91(2)
DS-CDMA Transmit and Receive Signal
93(4)
Novel Multi-carrier Chip Shapes and Novel Transmitters for DS-CDMA
97(4)
Novel Receiver Design for CI/DS-CDMA
101(4)
High-capacity DS-CDMA via Pseudo-Orthogonal CI Chip Shaping
105(3)
High Performance, High Capacity via a Second Pseudo-Orthogonal Chip Shaping
108(6)
Channel Model
114(2)
Characterizing Performance Gains and Network Capacity Improvements in CI/DS-CDMA
116(6)
Conclusions
122(3)
High-Performance, High-Throughput OFDM with Low PAPR via Carrier Interferometry Phase Coding
125(26)
Introduction
125(2)
Novel CI Codes and OFDM Transmitter Structures
127(7)
CI/OFDM & CI/COFDM
127(4)
Addition of Pseudo-Orthogonality to CI/OFDM & CI/COFDM
131(3)
Novel OFDM Receiver Structures
134(2)
Channel Modeling
136(1)
Performance Results
137(3)
Peak to Average Power Ratio Considerations
140(7)
PAPR in OFDM and CI/OFDM
141(3)
PAPR in PO-CI/OFDM
144(3)
Conclusions
147(4)
The Marriage of Smart Antenna Arrays and Multi-Carrier Systems: Spatial Sweeping, Transmit Diversity, and Directionality
151(46)
Smart Antennas with Spatial Sweeping
153(9)
Proposed Antenna Array Structure
154(4)
Receiver Design for Smart Antenna with Spatial Sweeping
158(1)
Theoretical Performance
159(3)
Simulated Performance
162(1)
Channel Modeling for Spatial Sweeping Smart Antennas: Establishing the Available Transmit Diversity
162(15)
Channel Model Assumptions
164(1)
Linear Time Varying Channel Impulse Response Modeling
165(4)
Evaluation of Coherence Time
169(1)
Updates to the Channel Impulse Response: Antenna Array Factor and Phase
170(7)
Innovative Combining of Multi-Carrier Systems and Smart Antennas with Spatial Sweeping
177(16)
The Transmit Side
179(2)
The Receiver Side
181(9)
Simulated Performance
190(3)
Conclusion
193(4)
Index 197