Atjaunināt sīkdatņu piekrišanu

E-grāmata: Multi-Parameter Hardy Spaces Theory and Endpoint Estimates for Multi-Parameter Singular Integrals

Citas grāmatas par šo tēmu:
  • Formāts - PDF+DRM
  • Cena: 108,57 €*
  • * ši ir gala cena, t.i., netiek piemērotas nekādas papildus atlaides
  • Ielikt grozā
  • Pievienot vēlmju sarakstam
  • Šī e-grāmata paredzēta tikai personīgai lietošanai. E-grāmatas nav iespējams atgriezt un nauda par iegādātajām e-grāmatām netiek atmaksāta.
Citas grāmatas par šo tēmu:

DRM restrictions

  • Kopēšana (kopēt/ievietot):

    nav atļauts

  • Drukāšana:

    nav atļauts

  • Lietošana:

    Digitālo tiesību pārvaldība (Digital Rights Management (DRM))
    Izdevējs ir piegādājis šo grāmatu šifrētā veidā, kas nozīmē, ka jums ir jāinstalē bezmaksas programmatūra, lai to atbloķētu un lasītu. Lai lasītu šo e-grāmatu, jums ir jāizveido Adobe ID. Vairāk informācijas šeit. E-grāmatu var lasīt un lejupielādēt līdz 6 ierīcēm (vienam lietotājam ar vienu un to pašu Adobe ID).

    Nepieciešamā programmatūra
    Lai lasītu šo e-grāmatu mobilajā ierīcē (tālrunī vai planšetdatorā), jums būs jāinstalē šī bezmaksas lietotne: PocketBook Reader (iOS / Android)

    Lai lejupielādētu un lasītu šo e-grāmatu datorā vai Mac datorā, jums ir nepieciešamid Adobe Digital Editions (šī ir bezmaksas lietotne, kas īpaši izstrādāta e-grāmatām. Tā nav tas pats, kas Adobe Reader, kas, iespējams, jau ir jūsu datorā.)

    Jūs nevarat lasīt šo e-grāmatu, izmantojot Amazon Kindle.

"The main purpose of this paper is to establish the theory of the multi-parameter Hardy spaces Hp (0 [ less than] p [ less than or equal to] 1) associated to a class of multi-parameter singular integrals extensively studied in the recent book of B. Street (2014), where the Lp (1 [ less than] p [ less than] [ infinity]) estimates are proved for this class of singular integrals. This class of multi-parameter singular integrals are intrinsic to the underlying multi-parameter Carnot-Caratheodory geometry, where the quantitative Frobenius theorem was established by B. Street (2011), and are closely related to both the one-parameter and multi-parameter settings of singular Radon transforms considered by Stein and Street (2011, 2012a, 2012b, 2013). More precisely, Street (2014) studied the Lp (1 [ less than] p [ less than] [ infinity]) boundedness, using elementary operators, of a type of generalized multi-parameter Calderon Zygmund operators on smooth and compact manifolds, which include a certain type of singular Radon transforms. In this work, we are interested in the endpoint estimates for the singular integral operators in both one and multi-parameter settings considered by Street (2014). Actually, using the discrete Littlewood-Paley-Stein analysis, we will introduce the Hardy space Hp (0 [ less than] p [ less than or equal to] 1) associated with the multi-parameter structures arising from the multi-parameter Carnot-Caratheodory metrics using the appropriate discrete Littlewood-Paley-Stein square functions, and thenestablish the Hardy space boundedness of singular integrals in both the single and multi-parameter settings. Our approach is much inspired by the work of Street (2014) where he introduced the notions of elementary operators so that the type of singular integrals under consideration can be decomposed into elementary operators"--

Lu, Shen, and Zhang establish the theory of the multi-parameter Hardy spaces Hp (with P being more than zero but not more than one) associated to a class of multi-parameter singular integrals that B. Street extensively studies in the 2014 paper "Multi-parameter Singular Integrals," where the Lp (with P being more than one but less than infinity) estimates are proved for this class of singular integrals. They cover single-parameter theory, multi-parameter setting: product theory, and general multi-parameter singular integrals and Hardy spaces. Annotation ©2022 Ringgold, Inc., Portland, OR (protoview.com)
Guozhen Lu, University of Connecticut, Storrs, Connecticut.

Jiawei Shen, Wayne State University, Detroit, Michigan.

Lu Zhang, Shaanxi Normal University, Xian, China, and Binghamton University, New York.