Atjaunināt sīkdatņu piekrišanu
  • Formāts - EPUB+DRM
  • Cena: 142,16 €*
  • * ši ir gala cena, t.i., netiek piemērotas nekādas papildus atlaides
  • Ielikt grozā
  • Pievienot vēlmju sarakstam
  • Šī e-grāmata paredzēta tikai personīgai lietošanai. E-grāmatas nav iespējams atgriezt un nauda par iegādātajām e-grāmatām netiek atmaksāta.

DRM restrictions

  • Kopēšana (kopēt/ievietot):

    nav atļauts

  • Drukāšana:

    nav atļauts

  • Lietošana:

    Digitālo tiesību pārvaldība (Digital Rights Management (DRM))
    Izdevējs ir piegādājis šo grāmatu šifrētā veidā, kas nozīmē, ka jums ir jāinstalē bezmaksas programmatūra, lai to atbloķētu un lasītu. Lai lasītu šo e-grāmatu, jums ir jāizveido Adobe ID. Vairāk informācijas šeit. E-grāmatu var lasīt un lejupielādēt līdz 6 ierīcēm (vienam lietotājam ar vienu un to pašu Adobe ID).

    Nepieciešamā programmatūra
    Lai lasītu šo e-grāmatu mobilajā ierīcē (tālrunī vai planšetdatorā), jums būs jāinstalē šī bezmaksas lietotne: PocketBook Reader (iOS / Android)

    Lai lejupielādētu un lasītu šo e-grāmatu datorā vai Mac datorā, jums ir nepieciešamid Adobe Digital Editions (šī ir bezmaksas lietotne, kas īpaši izstrādāta e-grāmatām. Tā nav tas pats, kas Adobe Reader, kas, iespējams, jau ir jūsu datorā.)

    Jūs nevarat lasīt šo e-grāmatu, izmantojot Amazon Kindle.

This book explores alternative ways of accomplishing secure information transfer with incoherent multi-photon pulses in contrast to conventional Quantum Key Distribution techniques. Most of the techniques presented in this book do not need conventional encryption. Furthermore, the book presents a technique whereby any symmetric key can be securely transferred using the polarization channel of an optical fiber for conventional data encryption. The work presented in this book has largely been practically realized, albeit in a laboratory environment, to offer proof of concept rather than building a rugged instrument that can withstand the rigors of a commercial environment. 

1 Introduction
1(28)
1.1 Cryptography
1(13)
1.1.1 Short History
2(9)
1.1.2 Classical Cryptography Limitations
11(2)
1.1.3 Quantum Cryptography as a Solution
13(1)
1.2 Quantum Cryptography
14(1)
1.3 Quantum World
14(6)
1.3.1 Polarization Concept
15(2)
1.3.2 Quantum Cryptography
17(3)
1.4 Post-quantum Cryptography
20(3)
1.4.1 Lattice-Based Cryptography
20(1)
1.4.2 Multivariate Cryptography
21(1)
1.4.3 Hash-Based Cryptography
22(1)
1.4.4 Code-Based Cryptography
22(1)
1.5 Scope and Contributions of This Book
23(1)
1.6 Organization of This Book
24(1)
References
25(4)
2 Mathematical Background
29(30)
2.1 Basic Concepts in Quantum Information
29(15)
2.1.1 Quantum State and Qubit
29(4)
2.1.2 Multiple Qubits
33(3)
2.1.3 Qubit Operations
36(2)
2.1.4 Mixed States and Density Operators
38(2)
2.1.5 No-Cloning Theorem
40(1)
2.1.6 Quantum Measurement
41(3)
2.2 Quantum Theory of Photons
44(13)
2.2.1 Quantization of Electromagnetic Field
44(4)
2.2.2 Photon States
48(3)
2.2.3 Representing Qubit Using Polarization States of a Photon
51(1)
2.2.4 Multi-photon Polarization States and Stokes Vector
52(3)
2.2.5 Polarization Rotation and Mueller Matrices for Multi-photon States
55(2)
2.3 Summary
57(1)
References
57(2)
3 Quantum Key Distribution
59(26)
3.1 Introduction
59(1)
3.2 Single Photon-Based QKD Protocols
60(5)
3.2.1 The BB84 Protocol
61(3)
3.2.2 The B92 Protocol
64(1)
3.3 Use of Weak Coherent States in QKD
65(10)
3.3.1 Photon-Number-Splitting Attack
66(3)
3.3.2 The SARG04 Protocol
69(1)
3.3.3 The Decoy-State Method
70(3)
3.3.4 The COW Protocol
73(2)
3.4 Entangled Photon-Based QKD Protocol
75(6)
3.4.1 Quantum Entanglement and Bell's Inequality
76(4)
3.4.2 The E91 Protocol
80(1)
3.5 Challenges of Current Approaches of QKD
81(1)
3.6 Summary
82(1)
References
82(3)
4 Secure Communication Based on Quantum Noise
85(12)
4.1 Introduction
85(1)
4.2 Keyed Communication in Quantum Noise (KCQ)
86(5)
4.2.1 KCQ Coherent-State Key Generation with Binary Detection
87(2)
4.2.2 Current Experimental Status
89(1)
4.2.3 Comparison Between QKD and KCQ
90(1)
4.3 Security Analysis of KCQ
91(2)
4.3.1 Information-Theoretic (IT) Security
91(2)
4.3.2 Complexity-Theoretic (CT) Security
93(1)
4.4 Summary
93(1)
References
94(3)
5 The Three-Stage Protocol: Its Operation and Implementation
97(8)
5.1 Introduction
97(1)
5.2 Principle of Operation
97(2)
5.3 Implementation of the Three-Stage Protocol Over Free Space Optics (FSO)
99(4)
5.3.1 Rotation Transformations
101(1)
5.3.2 Half Wave Plate Operation
101(2)
5.4 Summary
103(1)
References
103(2)
6 The Multi-stage Protocol
105(14)
6.1 Introduction
105(1)
6.2 The Multi-stage Protocol Polarization Hopping
106(3)
6.2.1 Comparison with Single-Photon Protocols
108(1)
6.3 Man-in-the-Middle Attack
109(4)
6.4 Key/Message Expansion Multi-stage Protocol
113(3)
6.4.1 Multi-stage Protocol Using an Initialization Vector
113(1)
6.4.2 Operation of the Four-Variables Three-Stage Protocol
113(2)
6.4.3 Implementation of the Four-Variables Three-Stage Protocol
115(1)
6.5 Summary
116(1)
References
117(2)
7 Preliminary Security Analysis of the Multi-stage Protocol
119(12)
7.1 Introduction
119(1)
7.2 Background Knowledge
120(2)
7.2.1 Helstrom Discrimination
120(2)
7.3 Photon Number Splitting Attack (PNS)
122(5)
7.3.1 Helstrom Discrimination
123(2)
7.3.2 Fock States
125(2)
7.4 Trojan Horse Attack
127(1)
7.5 Hardware Countermeasures
128(1)
7.6 Conclusion
128(1)
References
129(2)
8 Security Analysis of the Multi-stage Protocol
131(12)
8.1 Introduction
131(1)
8.2 Intercept-Resend (IR) and Photon Number Splitting (PNS) Attacks
132(3)
8.3 Authentication
135(3)
8.4 Amplification Attack
138(1)
8.5 Security and Key Rate Efficiency
139(1)
8.6 Summary
140(1)
References
140(3)
9 Application of the Multi-stage Protocol in IEEE 802.11i
143(18)
9.1 Introduction
143(1)
9.2 IEEE 802.11i
144(2)
9.2.1 The Four-Way Handshake
144(2)
9.3 Integration of QKD for Key Distribution in IEEE 802.11i
146(3)
9.3.1 Disadvantages of the Approach Described to Integrate QKD into IEEE 802.11i
148(1)
9.4 Hybrid Three-Stage Protocol
149(4)
9.4.1 Quantum Handshake Using the Three-Stage Protocol
150(1)
9.4.2 Quantum Handshake Using the Four-Variable Three-Stage Protocol
150(1)
9.4.3 Quantum Handshake Using the Single-Stage Protocol
151(1)
9.4.4 Hardware Implementation
152(1)
9.5 Software Implementation
153(5)
9.5.1 Multi-agent Approach in BB84
153(3)
9.5.2 Multi-agent Approach in Multi-photon Tolerant Protocols
156(1)
9.5.3 Analysis of the Quantum Handshake Using Three-Stage Protocol and Its Variants
157(1)
9.6 Summary
158(1)
References
159(2)
10 Intrusion Detection on Optical Fibers
161(12)
10.1 Intrusion Detection and Encryption
161(1)
10.2 Tapping of Optical Fibers
162(1)
10.3 Polarization Properties of Light [ 1]
163(1)
10.4 Experimental Setup
164(2)
10.5 Experimental Results
166(3)
10.6 Real-Life Applications of the Intrusion Detection System
169(2)
10.7 Summary
171(1)
References
171(2)
11 Secure Key Transfer Over the Polarization Channel
173(20)
11.1 Symmetric Key Encryption
173(2)
11.2 The Advanced Encryption System
175(1)
11.3 A Review of the Polarization Properties of Light
176(2)
11.4 Polarization Transfer Function and Fiber Characterization
178(6)
11.5 The System
184(4)
11.5.1 Method of Implementation
184(4)
11.6 Experimental Results
188(2)
11.7 Data Rate and Calibration Time
190(1)
11.8 Summary
190(1)
References
191(2)
12 An Ultra-Secure Router-to-Router Key Exchange System
193
12.1 Introduction
193(2)
12.2 Related Work
195(2)
12.2.1 Discrete Logarithms
195(1)
12.2.2 Contemporary Key Distribution Protocols
196(1)
12.3 The Proposed Protocol
197(4)
12.3.1 Multi-stage Protocol
198(1)
12.3.2 Man in the Middle Attack on Multi-stage Protocols
199(2)
12.4 Proposed Protocol Using an Initialization Vector and Its Cryptographic Strength
201(7)
12.4.1 Description
201(1)
12.4.2 Mode of Operation
202(2)
12.4.3 A Two-Stage Protocol
204(1)
12.4.4 Braiding Concept
205(1)
12.4.5 Man in the Middle Attack on a Multi-stage Protocol Using an Initialization Vector
206(1)
12.4.6 Characteristics of the Proposed Protocol
207(1)
12.5 Alternatives to the Proposed Approach
208(4)
12.5.1 Alternative I---RSA
208(2)
12.5.2 Alternative II---AES
210(1)
12.5.3 Alternative III---ECC
211(1)
12.6 Summary
212(1)
References
213