Author |
|
ix | |
|
Chapter 1 Multi-Aerial-Robot Planning |
|
|
1 | (56) |
|
|
1 | (1) |
|
|
2 | (13) |
|
|
3 | (2) |
|
1.2.2 Cascade-Type Guidance Law |
|
|
5 | (2) |
|
|
7 | (1) |
|
1.2.3.1 Consensus Opinion |
|
|
7 | (2) |
|
1.2.3.2 Reachability and Observability |
|
|
9 | (1) |
|
|
9 | (1) |
|
1.2.4.1 Collective Potential of Flocks |
|
|
10 | (1) |
|
1.2.4.2 Distributed Flocking Algorithms |
|
|
11 | (1) |
|
1.2.5 Connectivity and Convergence of Formations |
|
|
12 | (1) |
|
1.2.5.1 Problem Formulation |
|
|
12 | (1) |
|
1.2.5.2 Stability of Formations in Time-Invariant Communication |
|
|
13 | (2) |
|
1.3 Deterministic Decision-Making |
|
|
15 | (9) |
|
1.3.1 Distributed Receding Horizon Control |
|
|
16 | (1) |
|
1.3.2 Conflict Resolution |
|
|
17 | (1) |
|
1.3.2.1 Distributed Reactive Collision Avoidance |
|
|
18 | (1) |
|
1.3.2.2 Deconfliction Maintenance |
|
|
19 | (1) |
|
1.3.3 Artificial Potential |
|
|
19 | (1) |
|
|
19 | (1) |
|
1.3.3.2 Artificial Potential Field |
|
|
20 | (1) |
|
1.3.3.3 Pattern Formation and Reconfigurability |
|
|
21 | (1) |
|
|
22 | (2) |
|
1.4 Association with Limited Communication |
|
|
24 | (5) |
|
|
24 | (1) |
|
1.4.2 Problem Formulation |
|
|
24 | (2) |
|
1.4.2.1 Decentralized Resolution of Inconsistent Association |
|
|
26 | (1) |
|
|
27 | (1) |
|
1.4.4 Games Theory Reasoning |
|
|
28 | (1) |
|
1.4.4.1 Cooperative Protocol |
|
|
29 | (1) |
|
1.4.4.2 Non-Cooperative Protocol |
|
|
29 | (1) |
|
1.4.4.3 Leader/Follower Protocol |
|
|
29 | (1) |
|
1.5 Multiagent Decision-Making under Uncertainty |
|
|
29 | (16) |
|
1.5.1 Decentralized Team Decision Problem |
|
|
30 | (1) |
|
1.5.1.1 Bayesian Strategy |
|
|
30 | (1) |
|
1.5.1.2 Semi-Modeler Strategy |
|
|
30 | (2) |
|
1.5.1.3 Communication Models |
|
|
32 | (4) |
|
1.5.2 Algorithms for Optimal Planning |
|
|
36 | (1) |
|
1.5.2.1 Multiagent A* (MAA*): A Heuristic Search Algorithm for DEC-POMDP |
|
|
36 | (1) |
|
1.5.2.2 Policy Iteration for Infinite Horizon |
|
|
37 | (1) |
|
1.5.2.3 Linear-Quadratic Approach |
|
|
37 | (1) |
|
1.5.2.4 Decentralized Chance-Constrained Finite Horizon Optimal Control |
|
|
38 | (1) |
|
1.5.3 Task Allocation: Optimal Assignment |
|
|
38 | (1) |
|
1.5.3.1 Hungarian Algorithm |
|
|
39 | (1) |
|
1.5.3.2 Interval Hungarian Algorithm |
|
|
40 | (2) |
|
1.5.3.3 Quantifying the Effect of Uncertainty |
|
|
42 | (1) |
|
1.5.3.4 Uncertainty Measurement for a Single Utility |
|
|
42 | (1) |
|
1.5.4 Distributed Chance-Constrained Task Allocation |
|
|
43 | (1) |
|
1.5.4.1 Chance-Constrained Task Allocation |
|
|
44 | (1) |
|
1.5.4.2 Distributed Approximation to the Chance-Constrained Task Allocation Problem |
|
|
45 | (1) |
|
|
45 | (11) |
|
1.6.1 Reconnaissance Mission |
|
|
45 | (1) |
|
1.6.1.1 General Vehicle Routing Problem |
|
|
45 | (1) |
|
1.6.1.2 Chinese Postman Problem |
|
|
46 | (1) |
|
1.6.1.3 Cluster Algorithm |
|
|
47 | (1) |
|
|
47 | (1) |
|
1.6.2 Expanding Grid Coverage |
|
|
48 | (1) |
|
1.6.3 Optimization of Perimeter Patrol Operations |
|
|
49 | (2) |
|
1.6.3.1 Multiagent Markov Decision Process |
|
|
51 | (1) |
|
1.6.3.2 Anytime Error Minimization Search |
|
|
51 | (2) |
|
1.6.4 Stochastic Strategies for Surveillance |
|
|
53 | (1) |
|
|
53 | (1) |
|
|
54 | (1) |
|
|
55 | (1) |
|
|
56 | (1) |
|
Chapter 2 Flight Planning |
|
|
57 | (74) |
|
|
57 | (2) |
|
2.2 Path and Trajectory Planning |
|
|
59 | (15) |
|
|
60 | (1) |
|
2.2.2 Trajectory Planning |
|
|
61 | (1) |
|
2.2.2.1 Time Optimal Trajectories |
|
|
61 | (1) |
|
2.2.2.2 Nonholonomic Motion Planning |
|
|
62 | (2) |
|
|
64 | (1) |
|
2.2.3.1 B-Spline Formulation |
|
|
65 | (1) |
|
2.2.3.2 Cubic Hermite Spline |
|
|
65 | (1) |
|
2.2.3.3 Quintic Hermite Spline |
|
|
66 | (1) |
|
2.2.3.4 Pythagorean Hodographs |
|
|
66 | (1) |
|
2.2.4 The Zermelo Problem: Aircraft in the Wind |
|
|
67 | (1) |
|
2.2.4.1 Initial Zermelo's Problem |
|
|
67 | (3) |
|
2.2.4.2 2D Zermelo's Problem on a Flat Earth |
|
|
70 | (1) |
|
2.2.4.3 3D Zermelo's Problem on a Flat Earth |
|
|
71 | (1) |
|
2.2.4.4 3D Zermelo's Problem on a Spherical Surface |
|
|
72 | (1) |
|
|
73 | (1) |
|
2.3 Guidance and Collision/Obstacle Avoidance |
|
|
74 | (25) |
|
|
75 | (1) |
|
2.3.1.1 Proportional Navigation |
|
|
76 | (1) |
|
2.3.1.2 Method of Adjoints |
|
|
76 | (1) |
|
2.3.1.3 Fuzzy Guidance Scheme |
|
|
77 | (3) |
|
2.3.2 Static Obstacles Avoidance |
|
|
80 | (1) |
|
|
81 | (7) |
|
2.3.2.2 Continuous Methods |
|
|
88 | (2) |
|
2.3.3 Moving Obstacles Avoidance |
|
|
90 | (1) |
|
|
91 | (2) |
|
2.3.3.2 Artificial Potential Fields |
|
|
93 | (1) |
|
2.3.3.3 Online Motion Planner |
|
|
94 | (1) |
|
2.3.3.4 Zermelo-Voronoi Diagram |
|
|
95 | (2) |
|
2.3.4 Time Optimal Navigation Problem with Moving and Fixed Obstacles |
|
|
97 | (1) |
|
2.3.4.1 Problem Formulation |
|
|
98 | (1) |
|
2.3.4.2 Control Parametrization and Time Scaling Transform |
|
|
98 | (1) |
|
|
99 | (1) |
|
|
99 | (31) |
|
2.4.1 Traveling Salesman Problem |
|
|
101 | (3) |
|
2.4.2 Replanning or Tactical and Strategical Planning |
|
|
104 | (2) |
|
|
106 | (1) |
|
2.4.3.1 Classical Approach |
|
|
106 | (2) |
|
2.4.3.2 Dynamic Multi-Resolution Route Optimization |
|
|
108 | (3) |
|
|
111 | (1) |
|
2.4.4.1 Fuzzy Decision Tree Cloning of Flight Trajectories |
|
|
111 | (3) |
|
2.4.4.2 Fuzzy Logic for Fire-Fighting Aircraft |
|
|
114 | (1) |
|
|
115 | (1) |
|
2.4.5.1 Patrolling Problem |
|
|
115 | (2) |
|
|
117 | (2) |
|
2.4.5.3 Discrete Stochastic Process for Aircraft Networks |
|
|
119 | (2) |
|
2.4.5.4 Sensor Tasking in Multi-Target Search and Tracking Applications |
|
|
121 | (4) |
|
2.4.6 Resource Manager for a Team of Autonomous Aircraft |
|
|
125 | (1) |
|
2.4.6.1 Routing with Refueling Depots for a Single Aircraft |
|
|
126 | (2) |
|
2.4.6.2 Routing with Refueling Depots for Multiple Aircraft |
|
|
128 | (2) |
|
|
130 | (1) |
|
Chapter 3 Orienteering and Coverage |
|
|
131 | (50) |
|
|
131 | (1) |
|
3.2 Operational Research Preliminaries |
|
|
131 | (13) |
|
3.2.1 General Vehicle Routing Problem |
|
|
131 | (1) |
|
3.2.2 Traveling Salesperson Problem |
|
|
132 | (1) |
|
3.2.2.1 Deterministic Traveling Salesperson |
|
|
133 | (2) |
|
3.2.2.2 Stochastic Traveling Salesperson |
|
|
135 | (2) |
|
|
137 | (1) |
|
3.2.3.1 Chinese Postperson Problem |
|
|
137 | (3) |
|
3.2.3.2 Rural Postperson Problem |
|
|
140 | (3) |
|
|
143 | (1) |
|
|
144 | (7) |
|
3.3.1 Orienteering Problem Formulation |
|
|
144 | (1) |
|
3.3.1.1 Nominal Orienteering Problem |
|
|
144 | (2) |
|
3.3.1.2 Robust Orienteering Problem |
|
|
146 | (1) |
|
3.3.1.3 UAV Team Orienteering Problem |
|
|
147 | (2) |
|
3.3.2 UAV Sensor Selection |
|
|
149 | (2) |
|
|
151 | (29) |
|
|
153 | (1) |
|
3.4.1.1 Barrier Coverage Approach |
|
|
153 | (2) |
|
3.4.1.2 Sensor Deployment and Coverage |
|
|
155 | (1) |
|
|
155 | (1) |
|
3.4.2.1 Coverage of a Circle |
|
|
155 | (2) |
|
3.4.2.2 Dynamic Boundary Coverage |
|
|
157 | (1) |
|
|
158 | (1) |
|
|
158 | (4) |
|
3.4.3.2 Boustrophedon Cellular Decomposition |
|
|
162 | (1) |
|
|
163 | (3) |
|
3.4.3.4 Distributed Coverage |
|
|
166 | (14) |
|
|
180 | (1) |
|
Chapter 4 Deployment, Patrolling and Foraging |
|
|
181 | (50) |
|
|
181 | (1) |
|
|
181 | (20) |
|
|
182 | (1) |
|
4.2.1.1 Deployment Methodology |
|
|
182 | (4) |
|
4.2.1.2 Deployment Strategies |
|
|
186 | (6) |
|
4.2.2 Mobile Sensor Network |
|
|
192 | (1) |
|
|
192 | (3) |
|
|
195 | (5) |
|
4.2.2.3 Wireless Sensor Network |
|
|
200 | (1) |
|
|
201 | (14) |
|
|
202 | (4) |
|
4.3.2 Area Cooperative Patrolling |
|
|
206 | (1) |
|
4.3.2.1 Multiple Depot Multi-TSP |
|
|
206 | (2) |
|
|
208 | (1) |
|
4.3.2.3 Coordination in a Unknown Environment |
|
|
209 | (6) |
|
|
215 | (14) |
|
4.4.1 Problem Formulation |
|
|
215 | (1) |
|
|
215 | (1) |
|
4.4.1.2 Continuous Foraging |
|
|
216 | (2) |
|
4.4.1.3 Foraging Algorithms |
|
|
218 | (3) |
|
|
221 | (1) |
|
4.4.2 Aerial Manipulation |
|
|
222 | (1) |
|
4.4.2.1 Aerial Transportation |
|
|
222 | (3) |
|
|
225 | (4) |
|
|
229 | (2) |
Bibliography |
|
231 | (20) |
Index |
|
251 | |