Atjaunināt sīkdatņu piekrišanu

E-grāmata: Multidisciplinary Design Optimization of Complex Structures Under Uncertainty

(University of Electronic Science and Technology of China, China),
  • Formāts - EPUB+DRM
  • Cena: 206,63 €*
  • * ši ir gala cena, t.i., netiek piemērotas nekādas papildus atlaides
  • Ielikt grozā
  • Pievienot vēlmju sarakstam
  • Šī e-grāmata paredzēta tikai personīgai lietošanai. E-grāmatas nav iespējams atgriezt un nauda par iegādātajām e-grāmatām netiek atmaksāta.
  • Bibliotēkām

DRM restrictions

  • Kopēšana (kopēt/ievietot):

    nav atļauts

  • Drukāšana:

    nav atļauts

  • Lietošana:

    Digitālo tiesību pārvaldība (Digital Rights Management (DRM))
    Izdevējs ir piegādājis šo grāmatu šifrētā veidā, kas nozīmē, ka jums ir jāinstalē bezmaksas programmatūra, lai to atbloķētu un lasītu. Lai lasītu šo e-grāmatu, jums ir jāizveido Adobe ID. Vairāk informācijas šeit. E-grāmatu var lasīt un lejupielādēt līdz 6 ierīcēm (vienam lietotājam ar vienu un to pašu Adobe ID).

    Nepieciešamā programmatūra
    Lai lasītu šo e-grāmatu mobilajā ierīcē (tālrunī vai planšetdatorā), jums būs jāinstalē šī bezmaksas lietotne: PocketBook Reader (iOS / Android)

    Lai lejupielādētu un lasītu šo e-grāmatu datorā vai Mac datorā, jums ir nepieciešamid Adobe Digital Editions (šī ir bezmaksas lietotne, kas īpaši izstrādāta e-grāmatām. Tā nav tas pats, kas Adobe Reader, kas, iespējams, jau ir jūsu datorā.)

    Jūs nevarat lasīt šo e-grāmatu, izmantojot Amazon Kindle.

In the realm of engineering structures design, the inevitability of uncertainties poses a significant challenge. Uncertainty-Based Multidisciplinary Design and Optimization (UBMDO) stands out for its dual ability to precisely quantify the impact of uncertain variables and harness the potential of multidisciplinary design and optimization, thereby attracting considerable attention. From basic theory to advanced applications, this book helps readers achieve more efficient and reliable design optimization in complex systems through rich case studies and practical technical guidance.

The book systematically expounds the fundamental theories and methods of UBMDO, encompassing crucial techniques such as uncertainty modeling, sensitivity analysis, approximate modeling, and uncertainty-based optimization. It also introduces various uncertainty analysis methods, such as stochastic, non-probabilistic, and hybrid approaches, aiding readers in comprehending and managing uncertainty within systems. Through diverse practical engineering cases in fields like machinery, aerospace, and energy, it illustrates the specific application and implementation process of the UBMDO method. Rich graphics, algorithms, and simulation results augment the practicality and applicability of the theoretical knowledge. Furthermore, it explores in depth the future development trends and challenges of UBMDO, sparking innovative thinking and research interests among readers in this field.

Multidisciplinary Design Optimization of Complex Structures Under Uncertainty caters to a diverse audience: engineers specializing in multidisciplinary design optimization are given the tools to master uncertainty management, and researchers in related fields will gain important theoretical insights and practical guidance in uncertainty analysis. Additionally, scholars and educators can utilize the book as a comprehensive resource for advanced courses, enabling students to grasp the latest UBMDO applications; and decision makers and managers handling complex systems can extract methods from the book, facilitating improved risk assessment and strategic development through uncertainty-based optimization.



From basic theory to advanced applications, this helps readers achieve more efficient and reliable design optimization in complex systems through rich case studies and practical technical guidance, presenting the fundamental theories and methods of Uncertainty-Based Multidisciplinary Design and Optimization.

1. Introduction.
2. Basic Knowledge of UBMDO.
3. Approximate Method.
4. Uncertainty Analysis Method.
5. Deterministic MDO Method.
6. UBMDO Method.
7. Application of Advanced UBMDO in Aviation Equipment.
8. Application of MDO Considering Random and Interval Uncertainty in Energy Equipment.
9. Application of Adaptive Surrogate Model-assisted UBMDO in Propulsion Equipment.
10. The Development Prospect of UBMDO.

Debiao Meng is an associate professor in the School of Mechanical and Electrical Engineering at the University of Electronic Science and Technology of China, China.

Shun-Peng Zhu is a professor in the School of Mechanical and Electrical Engineering at the University of Electronic Science and Technology of China, China.