Atjaunināt sīkdatņu piekrišanu

Multihazard Considerations in Civil Infrastructure [Hardback]

, (Weidlinger Associates Inc., New York, USA)
  • Formāts: Hardback, 507 pages, height x width: 254x178 mm, weight: 1088 g, 200 Illustrations, black and white
  • Sērija : Civil Infrastructure Health and Sustainability
  • Izdošanas datums: 06-Dec-2016
  • Izdevniecība: CRC Press Inc
  • ISBN-10: 1482208326
  • ISBN-13: 9781482208320
Citas grāmatas par šo tēmu:
  • Hardback
  • Cena: 249,78 €
  • Grāmatu piegādes laiks ir 3-4 nedēļas, ja grāmata ir uz vietas izdevniecības noliktavā. Ja izdevējam nepieciešams publicēt jaunu tirāžu, grāmatas piegāde var aizkavēties.
  • Daudzums:
  • Ielikt grozā
  • Piegādes laiks - 4-6 nedēļas
  • Pievienot vēlmju sarakstam
  • Bibliotēkām
  • Formāts: Hardback, 507 pages, height x width: 254x178 mm, weight: 1088 g, 200 Illustrations, black and white
  • Sērija : Civil Infrastructure Health and Sustainability
  • Izdošanas datums: 06-Dec-2016
  • Izdevniecība: CRC Press Inc
  • ISBN-10: 1482208326
  • ISBN-13: 9781482208320
Citas grāmatas par šo tēmu:
Ettouney, a consulting engineer, and Alampalli, who is associated with the Structures Evaluation Services Bureau of the New York State Department of Transportation, examine issues related to multihazard considerations in civil infrastructure. They describe the definitions of hazard and multihazard, and basic concepts related to hazards; multihazard theories; methods to quantify interactions between hazards using the results of conventional structural analysis procedures; multihazard aspects of vulnerability, reliability, and exposure; the use of probabilistic graph networks; multihazard techniques and metrics related to risk and resilience assessment; acceptance methods; risk treatment; different types of multihazard monitoring; and examples like cable bridges and long-term collapse risk. Annotation ©2017 Ringgold, Inc., Portland, OR (protoview.com)

This book explains and presents the need for Multihazard Consideration (MH) in the management of civil infrastructure, what constitutes MH, and how to address MH in design and analysis. A generalized theory of MH will serve as the basis of the objective treatment of this volume. Use of MH in bridge management (inspection, maintenance, rehabilitation, and replacement) will serve as the basis for several examples, and numerous case studies will be presented throughout.

Recenzijas

"This is a very much needed book in the field of infrastructure engineering. This is the first time that the topic of Multihazard considerations has been so thoroughly and clearly studied. This book will serve the engineering community in the years to come as it will be the basis for courses in civil engineering. It adds a new line of thinking to what we already think of as civil engineering." Simos Gerasimidis, University of Massachusetts, Amherst, USA

"Multihazard Considerations in Civil Infrastructure is a highly innovative book. It is a timely book given the increasing interest in multi-hazards. The book provides a strong and quantitative description of multihazard assessment and design. It is an excellent go to resource for those readers looking to learn about multihazard analyses for their applications in civil infrastructure. The main strength of the book is the emphasis on multi-hazard analysis in the context of decision making which is where the rubber hits the road in the world of multihazards." Jerome Lynch, University of Michigan, USA

"This book will serve as a valuable resource and a handbook for those involved in monitoring and inspection of infrastructures. It is especially useful for engineers considering analysis of infrastructure systems in multihazard environments." Journal of Civil Structural Health Monitoring, February 2017

Preface xvii
Acknowledgments xxi
Authors xxiii
Chapter 1 Introduction to Multihazard Considerations
1(16)
1.1 Overview
1(1)
1.1.1 What Is not Multihazard?
2(1)
1.1.2 Multihazard versus All Hazards: It Is More than Semantics
2(1)
1.2 Multihazard in Literature
2(2)
1.2.1 MH Tools
4(1)
1.3 What Is a "Hazard"?
4(1)
1.3.1 Hazards, Threats, and Demands
5(1)
1.4 This
Chapter
5(1)
1.5 Characteristics of a Hazard
5(2)
1.6 Hazards Classifications
7(3)
1.6.1 Overview
7(1)
1.6.2 Frequency Classifications
8(1)
1.6.3 Temporal Classifications
9(1)
1.6.4 Newtonian versus Non-Newtonian Hazards
10(1)
1.7 Illustrative Examples
10(2)
1.8 Multihazard Metrics
12(2)
1.8.1 Risk, Reliability, and Exposure
12(2)
1.8.2 Summary of Metrics
14(1)
1.9 MH Measures and Methods of Hazards Interaction
14(1)
1.9.1 Measures
14(1)
1.9.2 MH Methods
15(1)
1.10 Benefits of Multihazard Considerations
15(2)
References
16(1)
Chapter 2 Theoretical Background
17(14)
2.1 Overview
17(1)
2.2 Theoretical MH in Literature
17(1)
2.3 This
Chapter
18(1)
2.4 Multihazard Physical Theory
19(1)
2.5 Multihazard Decision Theory
19(1)
2.6 Qualitative Outlook to MH Interactions
20(1)
2.7 Needs for Objective Basis of MH Process
20(5)
2.8 How Do Hazards Interact?
25(6)
References
29(2)
Chapter 3 Analysis in MH Environment
31(46)
3.1 Introduction
31(1)
3.1.1 Overview
31(1)
3.1.2 This
Chapter
32(1)
3.2 MH Interaction Matrix
32(5)
3.2.1 Case Study 3.1: MH Statics of Building Frames
33(3)
3.2.2 Degree-of-Freedom Adjustment
36(1)
3.2.3 Limitations of MHIM
36(1)
3.3 MHIM for Internal Forces: Force MH Interaction Matrix
37(2)
3.3.1 Case Study 3.2: MH Static Analysis of Internal Forces
37(2)
3.4 Dynamic Hazards: Evaluation for Dynamic Multihazard Interaction Coefficient (D-MHIC) and Multihazard Interaction Matrix (D-MHIM)
39(5)
3.4.1 Case Study 3.3: MH Dynamics of Building Frames
39(3)
3.4.2 Case Study 3.4: MH Dynamics of Truss Bridges
42(2)
3.5 Dynamic--Static Hazards: DS-MHIM
44(4)
3.5.1 Case Study 3.5: Wind--Seismic Hazard Interaction Analysis of Building Frames
44(1)
3.5.2 Case Study 3.6: Wind--Seismic--Blast Hazard Interaction Analysis of Building Frames
45(1)
3.5.3 Case Study 3.7: Live Load--Seismic Hazard Interaction Analysis of Truss Bridges
46(2)
3.6 MH in Nonlinear Problems
48(4)
3.6.1 Theoretical Development
48(1)
3.6.2 Case Study 3.8: Using Ductility as a MH Metric
49(3)
3.6.3 Remarks
52(1)
3.7 Partial MH Indices
52(1)
3.7.1 Revisiting Case Study 3.1 with n = 3
52(1)
3.7.2 Revisiting Case Study 3.1 with n = 1
53(1)
3.8 Other Forms of MH Analysis
53(24)
Appendix 3A Displacement/Rotation
54(1)
Appendix 3B Modal Analysis of Structures
55(1)
Appendix 3C Truncated Displacements/Rotations
56(1)
Appendix 3D Truncated Displacements/Rotations
56(1)
Appendix 3E Modal Data
57(12)
Appendix 3F Modal Data
69(4)
Appendix 3G Modal Data
73(2)
References
75(2)
Chapter 4 Vulnerability, Reliability, and Exposure: Current Design Paradigms
77(50)
4.1 Introduction
77(1)
4.1.1 Overview
77(1)
4.1.2 This
Chapter
78(1)
4.2 Vulnerability of Infrastructures
78(10)
4.2.1 Overview
78(1)
4.2.2 Physical MH Vulnerability Interactions
78(2)
4.2.3 Case Study 4.1: MH Vulnerability Interactions of Mass Transit Stations
80(4)
4.2.4 Decision-Based Vulnerability Interactions
84(1)
4.2.5 Case Study 4.2: MH Vulnerability Interactions of Tunnels
85(2)
4.2.6 Remarks
87(1)
4.3 Reliability-Based Design: MH Viewpoints of Governing Equations
88(10)
4.3.1 Overview
88(1)
4.3.2 Theoretical Background
88(2)
4.3.3 MH Structural Reliability Metrics
90(1)
4.3.4 MH Interaction through DLC (MH-DLC)
91(2)
4.3.5 MH Design Using Design Loading Conditions (MH-DLC)
93(1)
4.3.5.1 Overview
93(1)
4.3.5.2 Case Study 4.3: Evaluating MH-DLC Using Simulated Current Practices
93(1)
4.3.6 MH-Design Efficiency Matrix
94(1)
4.3.6.1 Overview
94(2)
4.3.6.2 Case Study 4.4: Simple Analytic Expressions of MH-DEM
96(1)
4.3.6.3 Case Study 4.5: Numerical Solution of MH-DEM for Portal Frame Design
97(1)
4.4 Reliability-Based Design: MH Serial versus Parallel Design Process
98(9)
4.4.1 Overview
98(1)
4.4.2 Application of MPT: Wind and Progressive Collapse of Tall Buildings
99(2)
4.4.3 Interaction of MH Building Systems: Wind and Seismic Hazards
101(3)
4.4.4 Life-Cycle Cost Analysis: Seismic versus Blast
104(3)
4.4.5 Remarks
107(1)
4.5 Exposure: Are Infrastructures Exposed to One Hazard at a Time?
107(20)
4.5.1 Overview
107(1)
4.5.2 Exposure Definitions
107(2)
4.5.3 Physical MH Exposure Interactions
109(5)
4.5.4 Case Study 4.6: MH Exposure Interaction for Mass Transit Stations
114(1)
4.5.5 Decision-Based Exposure Interactions
114(6)
4.5.6 Case Study 4.7: Decision-Based MH Exposure Interaction for Tunnels
120(2)
4.5.7 Remarks
122(1)
Appendix 4A Matrices of Case Study 4.3
123(2)
Appendix 4B Matrices of Case Study 4.5
125(1)
References
125(2)
Chapter 5 Probabilistic Graph Networks
127(42)
5.1 Introduction
127(1)
5.1.1 Overview
127(1)
5.1.2 This
Chapter
127(1)
5.2 Formal Modeling of Graph Networks
128(4)
5.2.1 Overview
128(1)
5.2.2 Components of Graph Networks
129(1)
5.2.2.1 Nodes
129(1)
5.2.2.2 Links
130(1)
5.2.2.3 Layers
130(1)
5.2.3 Tree versus Network
131(1)
5.2.4 Cyclic versus Acyclic Networks
132(1)
5.2.5 Observations (Evidence)
132(1)
5.2.5.1 Soft Evidence versus Hard Evidence
132(1)
5.3 Bayesian Networks (BN)
132(9)
5.3.1 Bayesian Theory
132(1)
5.3.2 Definition of Bayesian Networks
133(1)
5.3.3 Templates of Bayesian Networks Examples
133(1)
5.3.4 Case Study 5.1: Absolute Risk versus Relative Risk
134(1)
5.3.4.1 Overview
134(1)
5.3.4.2 Model
134(1)
5.3.4.3 CPT
134(1)
5.3.4.4 Results
135(2)
5.3.4.5 Concluding Remarks
137(1)
5.3.5 Case Study 5.2: Infrastructure Security
137(1)
5.3.5.1 Overview
137(1)
5.3.5.2 Model
137(1)
5.3.5.3 CPTs
138(1)
5.3.5.4 Results
138(3)
5.3.6 Bayesian Network: Closing Remarks
141(1)
5.4 Markov Networks
141(6)
5.4.1 Case Study 5.3: Traffic and Functional Class
142(1)
5.4.1.1 Overview
142(1)
5.4.1.2 Potentials
142(1)
5.4.1.3 Results
143(1)
5.4.2 Case Study 5.4: Architectural Vulnerability
143(1)
5.4.2.1 Overview
143(1)
5.4.2.2 Model
143(1)
5.4.2.3 CPT
144(1)
5.4.2.4 Results
144(2)
5.4.3 Case Study Revisited: Traffic and Functional Class
146(1)
5.4.4 Concluding Remarks
147(1)
5.5 Chain Graphs: Combining Bayesian and Markov Networks
147(4)
5.5.1 Overview
147(1)
5.5.2 Case Study 5.5: Risk and Its Components
148(1)
5.5.2.1 Overview
148(1)
5.5.2.2 Model
148(2)
5.5.2.3 CPTs and Potentials
150(1)
5.5.2.4 Results
150(1)
5.6 Decision under Uncertainty: Influence Diagrams
151(8)
5.6.1 Overview
151(1)
5.6.2 Decision Trees and Utility
152(1)
5.6.2.1 Overview
152(1)
5.6.2.2 Utility versus Risk
153(1)
5.6.2.3 Case Study 5.6: Structure Inspection and Monitoring Methods Using Decision Tree
153(3)
5.6.3 Influence Diagrams
156(1)
5.6.3.1 Overview
156(1)
5.6.3.2 Case Study 5.7: Structure Inspection and Monitoring Methods Using Influence Diagram
157(2)
5.7 Dynamic Graph Networks
159(7)
5.7.1 Overview
159(2)
5.7.2 Time Marching in Dynamic Graph Network
161(1)
5.7.3 Case Study 5.8: Observed versus Actual Infrastructure Condition Rating
162(4)
5.8 Sources of CPTs
166(1)
5.9 Concluding Remarks
167(2)
References
167(2)
Chapter 6 Risk and Resilience Assessment in Multihazard Environment
169(34)
6.1 Introduction
169(4)
6.1.1 Overview
169(4)
6.1.2 This
Chapter
173(1)
6.2 MH Risk Assessment
173(4)
6.2.1 Overview
173(1)
6.2.2 MH Risk Assessment
174(1)
6.2.3 MH Matrices: Difference Concept
174(2)
6.2.4 MH Matrices: Rate of Change Concept
176(1)
6.3 Weighted Averages MH Risk Assessment Methods
177(13)
6.3.1 Physical MH Risk Interactions
177(2)
6.3.2 Case Study 6.1: MH-Design Risk Interaction Matrices, Mass Transit Stations
179(5)
6.3.3 Decision-Based MH Risk Interactions
184(2)
6.3.4 Case Study 6.2: Decision-Based MH-Design Risk Interactions Applied to Tunnels
186(2)
6.3.5 Remarks
188(2)
6.4 Case Study 6.3: Modeling MH Conflicting, Consistent, and General Attributes
190(4)
6.5 MH Resilience Assessment
194(9)
6.5.1 Overview
194(1)
6.5.2 Case Study 6.4: MH Resilience Assessment of Single Assets
195(1)
6.5.3 Case Study 6.5: MH Resilience Assessment of Asset Network
195(3)
Appendix 6A Definitions of Network Nodal Variables
198(2)
References
200(3)
Chapter 7 Multihazard Acceptance
203(98)
7.1 Introduction
203(1)
7.1.1 Overview
203(1)
7.1.2 Current Practice
203(1)
7.1.3 This
Chapter
204(1)
7.2 Methods of Acceptance in an MH Environment
204(5)
7.2.1 Theoretical Background
204(2)
7.2.2 MH Exposure Acceptance
206(1)
7.2.3 MH Risk Acceptance
206(1)
7.2.3.1 Overview
206(1)
7.2.3.2 Component-Based Approach
206(1)
7.2.3.3 Target Methods
206(1)
7.2.3.4 MH Total Difference Method
206(1)
7.2.4 Acceptance at LLS
207(1)
7.2.4.1 Overview
207(1)
7.2.4.2 Acceptance Process at LLS
208(1)
7.2.5 Infrastructure Network
209(1)
7.3 Case Study 7.1: Component-Based MH Risk Acceptance
209(5)
7.3.1 Overview
209(1)
7.3.2 Model
210(1)
7.3.3 CPTs
210(1)
7.3.4 Results
210(4)
7.3.5 Remarks
214(1)
7.4 Case Study 7.2: Subjective MH Multitarget Risk Limit States
214(3)
7.4.1 Overview
214(1)
7.4.2 Model
215(1)
7.4.3 CPTs
215(1)
7.4.4 Results
215(2)
7.4.5 Remarks
217(1)
7.5 Case Study 7.3: Objective MH Risk Targets
217(4)
7.5.1 Overview
217(1)
7.5.2 Model
218(1)
7.5.3 CPTs
219(1)
7.5.4 Results
219(2)
7.6 Case Study 7.4: MH Risk Target while Prescribing Consequences
221(2)
7.6.1 Overview
221(1)
7.6.2 Model
221(1)
7.6.3 CPTs
222(1)
7.6.4 Results
223(1)
7.7 Case Study 7.5: MH Risk Acceptance at Lower Limit States (Deterioration of Infrastructures)
223(10)
7.7.1 Overview
223(2)
7.7.2 Model
225(3)
7.7.3 CPTs
228(1)
7.7.4 Results
228(2)
7.7.5 MH Acceptance at LLS
230(2)
7.7.6 Remarks
232(1)
7.8 Case Study 7.6: Revisiting MH LLS Acceptance with Advanced Modeling and Concepts
233(7)
7.8.1 Overview
233(3)
7.8.2 Model
236(2)
7.8.3 CPTs
238(1)
7.8.4 Results
238(1)
7.8.4.1 MH Acceptance at LLS
239(1)
7.9 Case Study 7.7: Total Difference Method Using MH Risk or Vector Matrices
240(5)
7.9.1 Overview
240(2)
7.9.2 Model
242(1)
7.9.3 CPTs
243(1)
7.9.4 Results
243(2)
7.9.5 Remarks
245(1)
7.10 Case Study 7.8: Network MH Risk Acceptance
245(56)
7.10.1 Overview
245(1)
7.10.2 Model
246(1)
7.10.3 CPTs
246(1)
7.10.4 Results
247(7)
Appendix 7A Definitions of Network Nodal Variables
254(2)
Appendix 7B CPTs for Case Study 7.1
256(6)
Appendix 7C CPTs for Case Study 7.2
262(4)
Appendix 7D CPTs for Case Study 7.3
266(5)
Appendix 7E CPTs for Case Study 7.4
271(2)
Appendix 7F CPTs for Case Study 7.5
273(6)
Appendix 7G CPTs for Case Study 7.6
279(9)
Appendix 7H CPTs for Case Study 7.7
288(7)
Appendix 7I CPTs and Potentials for Case Study 7.8
295(3)
References
298(3)
Chapter 8 Multihazard Risk and Resilience Treatment
301(100)
8.1 Introduction
301(2)
8.1.1 Overview
301(1)
8.1.2 This
Chapter
302(1)
8.2 Risk and Resilience Treatment in an MH Environment
303(4)
8.2.1 MH Risk Treatment versus MH Resilience Treatment
303(1)
8.2.2 Utility
303(1)
8.2.2.1 Overview
303(2)
8.2.2.2 Theory of Utility
305(1)
8.2.2.3 Types of Utility
306(1)
8.2.2.4 Use of Utility in Risk Treatment
306(1)
8.3 MH Single-Asset Risk Treatment
307(20)
8.3.1 Overview
307(1)
8.3.2 Case Study 8.1: MH Decision Matrix for Three Hazards
307(1)
8.3.2.1 Overview
307(1)
8.3.2.2 Model
307(1)
8.3.2.3 CPTs
307(1)
8.3.2.4 Results
308(1)
8.3.2.5 MH Decision Matrix
308(2)
8.3.3 Case Study 8.2: MH Risk Mitigation for Two Hazards, Interaction through Utilities
310(1)
8.3.3.1 Overview
310(1)
8.3.3.2 Model
311(4)
8.3.3.3 CPTs
315(1)
8.3.3.4 Results
316(1)
8.3.3.5 MH Optimal Decisions
316(1)
8.3.3.6 Total Utility
316(4)
8.3.4 Case Study 8.3: MH Risk Mitigation for Two Hazards (Blast and Seismic Interaction) through Exposure and Utilities
320(1)
8.3.4.1 Overview
320(4)
8.3.4.2 Model
324(1)
8.3.4.3 CPTs
325(1)
8.3.4.4 Results
325(1)
8.3.4.5 MH Optimal Decisions
326(1)
8.3.4.6 MH Using Exposure as a Metric
327(1)
8.4 MH Community (Network) Resilience Treatment
327(74)
8.4.1 Overview
327(3)
8.4.2 Case Study 8.4: MH Resilience Treatment
330(1)
8.4.2.1 Overview
330(1)
8.4.2.2 Model
330(1)
8.4.2.3 CPTs
331(1)
8.4.2.4 Results
332(1)
8.4.2.5 MH Optimal Decisions
332(1)
8.4.3 Network MH Effects: Cascading Hazards
333(1)
8.4.3.1 Overview
333(2)
8.4.3.2 Case Study 8.5: Consequent Hazards, Flood and Fire
335(7)
8.4.3.3 Case Study 8.6: MH Treatment of Cascading Effects
342(30)
Appendix 8A Definitions of Network Nodal Variables
372(1)
Appendix 8B CPTs for Case Study 8.1
373(3)
Appendix 8C CPTs for Case Study 8.2
376(4)
Appendix 8D CPTs for Case Study 8.3
380(4)
Appendix 8E CPTs for Case Study 8.4
384(4)
Appendix 8F CPTs and Potentials for Case Study 8.5
388(5)
Appendix 8G CPTs and Potentials for Case Study 8.6
393(6)
References
399(2)
Chapter 9 Multihazard Exposure, Risk, and Resilience Monitoring
401(50)
9.1 Introduction
401(2)
9.1.1 Overview
401(1)
9.1.2 This
Chapter
402(1)
9.2 Types of MH Monitoring
403(3)
9.2.1 Categorizing MHM according to Their Objectives
403(1)
9.2.2 Categorizing of MHM according to Management Metrics
403(1)
9.2.2.1 Exposure MHM
404(1)
9.2.2.2 Risk MHM
404(1)
9.2.2.3 Resilience MHM
405(1)
9.2.3 Time Categorizations of MHM
405(1)
9.3 MH Monitoring: Snapshots in Time
406(7)
9.3.1 Case Study 9.1: Visual Inspection of Multihazard
406(1)
9.3.1.1 Overview
406(1)
9.3.1.2 Model
406(1)
9.3.1.3 CPTs
407(1)
9.3.1.4 Results
407(1)
9.3.2 Case Study 9.3: MH Monitoring Using Different Monitoring Techniques
408(1)
9.3.2.1 Overview
408(1)
9.3.2.2 Model
408(1)
9.3.2.3 CPTs
409(1)
9.3.2.4 Results
409(2)
9.3.3 Case Study 9.4: MH Risk Monitoring
411(1)
9.3.3.1 Overview
411(1)
9.3.3.2 Model
411(1)
9.3.3.3 CPTs
412(1)
9.3.3.4 Results
412(1)
9.3.3.5 Observations and Updating
413(1)
9.4 MH Monitoring: Time Marching
413(38)
9.4.1 Case Study 9.2: Time Marching MH Monitoring (Type II MHEM)
413(1)
9.4.1.1 Overview
413(2)
9.4.1.2 Model
415(3)
9.4.1.3 CPTs
418(1)
9.4.1.4 Results
418(1)
9.4.1.5 Remarks
419(1)
9.4.2 Case Study 9.5: MH Effects on Life-Cycle Analysis
420(1)
9.4.2.1 Overview
420(1)
9.4.2.2 Model
420(4)
9.4.2.3 CPTs
424(1)
9.4.2.4 Results
424(8)
Appendix 9A Definitions of Network Nodal Variables
432(1)
Appendix 9B CPTs for Case Studies 9.1 and 9.2
433(2)
Appendix 9C CPTs for Case Study 9.3
435(3)
Appendix 9D CPTs for Case Study 9.4
438(6)
Appendix 9E CPTs for Case Study 9.5
444(6)
References
450(1)
Chapter 10 Applications
451(44)
10.1 Introduction
451(1)
10.2 MH Case Study 10.1: MH Matrices of Risk, Reliability, and Consequences for Single Asset
452(5)
10.2.1 Overview
452(1)
10.2.2 MH Modeling
452(1)
10.2.3 Analytical Model
453(1)
10.2.4 CPTs
453(1)
10.2.5 Results
453(1)
10.2.5.1 Prior (Historical) Results
453(1)
10.2.5.2 Marginal Probabilities Results with Evidence
454(1)
10.2.5.3 MH Risk and Reliability
455(2)
10.3 MH Considerations for Cable Bridges: A Security Viewpoint
457(10)
10.3.1 Overview
457(1)
10.3.2 Analysis and Design
457(2)
10.3.2.1 Seismic and Security Needs
459(1)
10.3.2.2 Durability and Security
459(1)
10.3.2.3 Climate Change and Security
460(1)
10.3.2.4 Recurring Major Works, Maintenance, Inspection, and Monitoring
460(1)
10.3.3 Life-Cycle Costs
460(2)
10.3.4 Case Study 10.2: MH (Climate Change+Security) Risk Considerations of Cable Bridge
462(1)
10.3.4.1 Overview
462(1)
10.3.4.2 MH Modeling
462(1)
10.3.4.3 Analytical Model
463(2)
10.3.4.4 CPTs
465(1)
10.3.4.5 Results
465(2)
10.4 Case Study 10.3: Long-Term Collapse Risk in an MH Environment
467(28)
10.4.1 Overview
467(3)
10.4.2 Modeling
470(1)
10.4.3 Model
471(1)
10.4.4 CPTs
471(1)
10.4.5 Results
472(1)
10.4.5.1 MH Risk and Objective Mitigation
472(4)
10.4.6 Remarks
476(4)
Appendix 10A First-and Second-Order Difference Equations
480(1)
Appendix 10B Definitions of Network Nodal Variables
481(1)
Appendix 10C CPTs for Case Study 10.1
482(3)
Appendix 10D CPTs for Case Study 10.2
485(4)
Appendix 10E CPTs for Case Study 10.3
489(4)
References
493(2)
Appendix A Unit Conversion 495(2)
Appendix B Truncated Normal Distributions 497(2)
Appendix C Statistics of Histograms 499(2)
Index 501
Mohammed M. Ettouney, Sreenivas Alampalli