Atjaunināt sīkdatņu piekrišanu

Multimedia Technology for Applications [Hardback]

Edited by (University of Southern California), Associate editor (University of Southern California), Edited by (Ohio State University), Associate editor (University of Southern California)
  • Formāts: Hardback, 702 pages, height x width x depth: 262x184x41 mm, weight: 1445 g
  • Izdošanas datums: 22-Jun-1998
  • Izdevniecība: Wiley-IEEE Press
  • ISBN-10: 0780311744
  • ISBN-13: 9780780311749
  • Formāts: Hardback, 702 pages, height x width x depth: 262x184x41 mm, weight: 1445 g
  • Izdošanas datums: 22-Jun-1998
  • Izdevniecība: Wiley-IEEE Press
  • ISBN-10: 0780311744
  • ISBN-13: 9780780311749
"This single, expertly-written volume brings you in-depth, interdisciplinary coverage of today's state-of-the-art multimedia technology--the combined work of more than 20 leaders in the field. With an emphasis on consumer electronics, the contributing authors to MULTIMEDIA TECHNOLOGY FOR APPLICATIONS present the very latest advances in signal processing, communications and networking, computer databases, and circuits and systems as they relate to multimedia technology and applications. Topics covered include: multimedia systems; standards, and trends; submicro electronic enabling technologies; digital library servers; networking; multimedia signal processing and applications.MULTIMEDIA TECHNOLOGY FOR APPLICATIONS is thoughtfully structured and complete with numerous figures and examples, making it of key interest to advanced student engineers and managers in industry, as well as professional engineers in need of a current, practical resource."

Sponsored by: IEEE Circuits and Systems Society, IEEE Solid-State Circuits Council/Society.
List of Contributors xvii(4)
Preface xxi(2)
Acknowledgments xxiii(2)
Introduction xxv(10)
Multimedia in the View of the Younger Generation xxxv
PART I MULTIMEDIA SYSTEMS, STANDARDS, AND TRENDS 1(116)
1 CURRENT AND FUTURE TRENDS IN MULTIMEDIA STANDARDS
3(67)
1.1 Part I: MPEG-4
3(33)
1.1.1 Introduction
3(2)
1.1.2 H.263: The ITU-T Low Bit-Rate Video Standard
5(1)
1.1.3 MPEG-4 Background
6(2)
1.1.4 MPEG-4 Requirements
8(3)
1.1.5 MPEG-4 Video
11(11)
1.1.6 MPEG-4 Audio
22(1)
1.1.7 MPEG-4 Syntax Description Language (MSDL)
22(9)
1.1.8 MPEG-4 Synthetic and Natural Hybrid Coding (SNHC)
31(4)
1.1.9 Summary and the Future
35(1)
1.2 Part II: Summary of DAVIC 1.0 Specification
36(19)
1.2.1 What Is DAVIC?
36(1)
1.2.2 DAVIC Specification 1.0
37(16)
1.2.3 The Latest DAVIC
53(2)
1.3 Part III: Multimedia Standards for Network Applications
55(13)
1.3.1 VRML
55(5)
1.3.2 Java
60(5)
1.3.3 MHEG
65(3)
References
68(2)
2 MULTIMEDIA TECHNOLOGIES AND VLSI SYSTEMS
70(24)
2.1 Multimedia System and Technology Components
70(4)
2.2 Multimedia Transport and VLSI
74(7)
2.3 Multimedia Processing and VLSI
81(3)
2.4 Architectural Options
84(4)
2.4.1 Generic Processor
84(1)
2.4.2 Custom Data Path Engine
85(2)
2.4.3 Application-Specific Processing Engines
87(1)
2.5 More VLSI Examples
88(1)
2.6 Design Issues
89(3)
2.7 Conclusions
92(1)
References
92(2)
3 INTRODUCTION TO RESEARCH ON MULTIMEDIA TECHNIQUES IN TELECOMMUNICATION LABORATORIES
94(23)
3.1 Development of Multimedia Telecommunication Services
94(4)
3.1.1 ISDN Distance Learning System
94(2)
3.1.2 Multimedia ISDN Teleshopping System
96(2)
3.2 ATM Broadband Experimental Network and Applications
98(3)
3.2.1 Network Topology
98(1)
3.2.2 Services and Applications
99(2)
3.3 Intelligent Technology and Multimedia Applications
101(11)
3.3.1 Intelligent Pen-Based Input Technique
101(2)
3.3.2 Gin-Ih Chinese Character Recognition System
103(1)
3.3.3 Intelligent and Automatic Official Document Processing System
103(2)
3.3.4 Intelligent Computer Speech Synthesis System
105(1)
3.3.5 Intelligent Chinese Speech Recognition System
106(1)
3.3.6 Trademark and Commerical Logo Information Processing System
107(1)
3.3.7 Interactive Telecommunication Training System (ITTS)
108(1)
3.3.8 Video-on-Demand (VOD) Services
109(1)
3.3.9 IWDPS and Future Works
110(2)
3.4 Development of Multimedia Customer Systems
112(2)
3.4.1 PC-Based ISDN Terminal
112(1)
3.4.2 PC-Based ISDN Videophone System
112(1)
3.4.3 384K Videoconference System
112(2)
3.4.4 Single-Board PC-Based ISDN Videophone System
114(1)
3.5 Conclusion
114(1)
References
114(3)
PART II SUBMICRON ELECTRONIC TECHNOLOGIES 117(98)
4 MEMORY ARCHITECTURES TECHNOLOGY FOR MULTIMEDIA SYSTEMS
119(37)
4.1 Overview of the Semiconductor Memory Industry
119(4)
4.1.1 Technology Trend
119(1)
4.1.2 Market Forecast
120(2)
4.1.3 Cost Analysis
122(1)
4.2 Key Elements for Memory
123(6)
4.2.1 Memory Cell
124(5)
4.2.2 Sense Amplifier
129(1)
4.3 Low-Power Design Technology
129(8)
4.3.1 Lowering Operating Voltage
130(1)
4.3.2 Charging Capacitance Reduction
131(2)
4.3.3 DC Leakage Current Reduction
133(4)
4.4 High-Throughput Technology
137(17)
4.4.1 Multibit DRAM
138(1)
4.4.2 Fast Page Mode DRAM
139(3)
4.4.3 Extended Data Out Mode (EDO)
142(3)
4.4.4 Synchronous DRAM
145(3)
4.4.5 Rambus DRAM
148(2)
4.4.6 Ramlink and Synclink
150(2)
4.4.7 Cache DRAM
152(1)
4.4.8 Video RAM
152(2)
4.5 Summary
154(1)
4.6 Acknowledgments
154(1)
References
154(2)
5 ADVANCED CMOS IMAGING
156(34)
5.1 Part I: Single-Chip Multimedia Camera
156(12)
5.1.1 Introduction
156(1)
5.1.2 CCD Sensors
157(2)
5.1.3 CMOS Sensors
159(3)
5.1.4 Single-Chip Camera
162(3)
5.1.5 Back-End Manufacturing Steps
165(2)
5.1.6 Evolution of Single-Chip Cameras
167(1)
References
168(1)
5.2 Part II: CMOS Image Sensor Technology
168(15)
5.2.1 Introduction
169(1)
5.2.2 Historical Background
169(3)
5.2.3 Overall Architecture
172(1)
5.2.4 Pixel Circuits
173(7)
5.2.5 Analog Signal Processing
180(1)
5.2.6 On-chip Analog-to-Digital Converter (ADC)
180(1)
5.2.7 Impact of CMOS Scaling Trends
181(2)
5.2.8 Roadmap for Camera-on-a-Chip
183(1)
5.3 Conclusions
183(1)
Acknowledgments
184(1)
References
184(6)
6 CAD OF MULTIMEDIA SYSTEMS
190(25)
6.1 Introduction
190(1)
6.2 The CAD Environment: DSP Canvas
191(3)
6.2.1 The JetStream Data Flow Simulator
191(1)
6.2.2 SystemSolve: Iterative Simulation and Optimization Tool
192(2)
6.3 Using DSP Canvas to Design and Emulate a Multimedia, Wireless Communication System
194(13)
6.3.1 Video Coding Algorithm Design
194(4)
6.3.2 Speech Codec Design
198(3)
6.3.3 Channel Coding
201(3)
6.3.4 A Direct-Sequence Spread-Spectrum Modem Design
204(3)
6.4 Computer-Aided Implementation of Multimedia Communications Components
207(5)
6.5 Conclusion
212(1)
Acknowledgments
212(1)
References
213(2)
PART III DIGITAL LIBRARY AND SERVICES 215(132)
7 THE TERADATA SQL3 MULTIMEDIA DATABASE SERVER
217(36)
7.1 The State of Client/Server Multimedia Applications
217(2)
7.2 Database Support for Multimedia Applications
219(1)
7.3 Programming a Multimedia Database System
220(4)
7.3.1 Defining New Multimedia Data Types
220(2)
7.3.2 Using These Data Types to Create Multimedia Tables
222(1)
7.3.3 Loading Multimedia Objects and Computing Feature Extracts
222(1)
7.3.4 Writing SQL Queries That Include Multimedia Terms
223(1)
7.4 Teradata Architecture for Multimedia Applications
224(5)
7.4.1 Federated Coordinator
224(3)
7.4.2 Relational Database Manager
227(1)
7.4.3 Multimedia Object Manager
227(1)
7.4.4 Real-Time Object Manager
228(1)
7.4.5 System Configuration Options
228(1)
7.5 Multimedia Object Manager Overview
229(5)
7.5.1 Multimedia Object Manager Design Principles
230(1)
7.5.2 Multimedia Object Manager Architecture
230(1)
7.5.3 Computation Engine
230(2)
7.5.4 Multimedia Object Storage Engine
232(1)
7.5.5 Multimedia Function (MMF) Library
233(1)
7.6 Content-Based Retrieval
234(8)
7.6.1 Feature Extraction
235(1)
7.6.2 Querying on Features
235(3)
7.6.3 Acceleration of Queries Via Indices
238(2)
7.6.4 Teradata Architecture to Support Content Queries
240(2)
7.7 Multimodal Queries
242(4)
7.7.1 Multimodal Examples
242(2)
7.7.2 Multimodal Technical Challenges
244(2)
7.8 Talking Agents Example
246(4)
7.8.1 Agent Creation
248(1)
7.8.2 Talking Agent Generation
249(1)
7.9 Summary
250(1)
Acknowledgments
250(1)
References
251(2)
8 VIDEO INDEXING AND RETRIEVAL
253(29)
8.1 Introduction
253(3)
8.2 Temporal Segmentation of Video Sequences
256(4)
8.3 Motion-based Indexing and Retrieval Methods
260(1)
8.4 Image-based Indexing and Retrieval Methods
261(5)
8.4.1 Global-scene-based Methods
262(1)
8.4.2 Object-based Methods
263(3)
8.5 Video Browsing System Using Human Faces
266(6)
8.5.1 Face Detection and Recognition
267(3)
8.5.2 Experimental Results
270(2)
8.6 Video Shot Classification Using Human Faces
272(6)
8.6.1 System Configuration of Video Classification
273(1)
8.6.2 Clustering of Facial Images
274(4)
8.7 Prototype Exemplars
278(1)
Acknowledgments
279(1)
References
279(3)
9 CONTENT-BASED IMAGE RETRIEVAL--RESEARCH ISSUES
282(41)
9.1 Executive Summary
282(4)
9.2 Image Query by Content--The Challenge
286(5)
9.3 Fourier-Transform Techniques
291(18)
9.3.1 Convolution and Correlation Operations
291(2)
9.3.2 Frequency-domain Computation of Discrimination Functions
293(11)
9.3.3 Searching JPEG-and MPEG-encoded Images
304(5)
9.4 Wavelet Transform Techniques
309(8)
9.5 Architecture Support for Image Query
317(3)
9.6 Summary and Conclusions
320(1)
Acknowledgments
321(1)
References
321(2)
10 DATA STORAGE AND RETRIEVAL IN DISK-ARRAY-BASED VIDEO SERVERS
323(24)
10.1 Introduction
323(3)
10.2 Video Replication in Disk Arrays
326(3)
10.2.1 Conventional Data Placement
326(1)
10.2.2 Description of RMD Scheme
327(2)
10.3 Data Retrieval in a Disk
329(2)
10.4 Storing Scalable Video Data
331(3)
10.4.1 Rate Staggering for Scalable Video Data Storage
332(1)
10.4.2 Advantages of Rate Staggering
333(1)
10.5 Providing Pause/Resume Operations with Batching and Buffering
334(1)
10.6 Fast Forward and Fast Backward Functions
335(5)
10.6.1 MPEG Data Organization
336(1)
10.6.2 Segment Sampling Method
337(1)
10.6.3 Segment Placement Method
338(2)
10.7 Downloading: An Alternative to Real-Time Playout
340(3)
10.8 Conclusions
343(1)
Acknowledgment
343(1)
References
343(4)
PART IV NETWORKING 347(82)
11 HIGH-SPEED LAN, MAN, AND ATM PROTOCOLS AS MULTIMEDIA CARRIERS
349(41)
11.1 Introduction
349(1)
11.2 Multimedia Traffic Characteristics and Quality-of-Service Requirements
350(3)
11.2.1 Q.S. Specification
350(3)
11.3 High-Speed LAN Protocols for Multimedia Transmission
353(9)
11.3.1 Options to Improve LAN Performance
354(1)
11.3.2 Enhanced Ethernet LAN Protocols
354(3)
11.3.3 Performance of Enhanced Ethernet Protocols
357(5)
11.4 High-Speed MAN Protocols for Multimedia Transmission
362(13)
11.4.1 Token-Based MAN Protocols: FDDI and FDDI-II
363(1)
11.4.2 Reservation-Based MAN Protocols: DQDB, CRMA, DQMA, and FDQ
363(5)
11.4.3 Throughput Performance
368(2)
11.4.4 Delay Performance
370(5)
11.5 The ATM Protocol
375(10)
11.5.1 ATM QoS and Service Classes
375(1)
11.5.2 ATM Traffic Control
376(1)
11.5.3 Rate-Based ABR Congestion Control Schemes
377(2)
11.5.4 Performance of ABR Congestion Control: The Effect of Bursty Source Traffic
379(2)
11.5.5 Burst-Level Admission Control Schemes
381(2)
11.5.6 Performance of FRP, AFRP, and MFRP
383(2)
11.6 Summary and Conclusions
385(1)
Acknowledgments
386(1)
References
386(4)
12 HIGH-SPEED OPTICAL INTERCONNECT FOR MULTIMEDIA SYSTEMS
390(23)
12.1 Introduction
390(1)
12.2 Existing Interconnection Hierarchy
391(3)
12.2.1 Reflections
393(1)
12.2.2 Ground-loop Noise
393(1)
12.2.3 Crosstalk Among Adjacent Interconnects
394(1)
12.2.4 Frequency-dependent Signal Distortion
394(1)
12.3 Optical Interconnects
394(3)
12.3.1 Potential Advantages
395(1)
12.3.2 Potential Problems
395(2)
12.4 Architecture of Optical Interconnects
397(6)
12.4.1 Interconnect Media
398(1)
12.4.2 Backplane Optical Interconnects
399(1)
12.4.3 Board and Multichip-Module Optical Interconnects
399(3)
12.4.4 Fully Differential Optical Interconnect
402(1)
12.5 Technologies for Optical Interconnect Systems
403(2)
12.5.1 Transmitter Array
403(1)
12.5.2 Waveguide
403(2)
12.5.3 Receiver Array
405(1)
12.6 Research Activities on Optical Interconnects
405(1)
12.7 Summary
406(1)
References
407(6)
13 NETWORKS FOR THE PROFESSIONAL CAMPUS ENVIRONMENT
413(16)
13.1 Introduction
413(2)
13.2 Advanced Fiber-Optic Physical Layer Technologies
415(2)
13.3 High-Performance Network Interfaces
417(3)
13.4 New Protocols for Low-Latency and High Sustained Throughput
420(3)
13.5 The Need for Vertical Integration from Physical Layers to Application Interfaces
423(3)
13.6 Conclusions
426(1)
Acknowledgments
426(1)
References
426(3)
PART V MULTIMEDIA SIGNAL PROCESSING AND APPLICATIONS 429(226)
14 INTELLIGENT SPEECH/AUDIO PROCESSING FOR MULTIMEDIA APPLICATIONS
431(32)
14.1 Introduction
431(2)
14.2 Speech/Audio Compression
433(6)
14.2.1 Low Bit-Rate Speech Coding
433(2)
14.2.2 High-Fidelity Audio Coding
435(2)
14.2.3 Industrial Standards and Applications
437(2)
14.3 Text-to-Speech Conversion
439(4)
14.3.1 Text-to-Speech Synthesis
440(3)
14.3.2 Text-to-Speech Technology for Multimedia
443(1)
14.4 Speech Understanding
443(6)
14.4.1 Automatic Speech Recognition
443(3)
14.4.2 Speaker Recognition
446(1)
14.4.3 Applications of Speech Understanding for Multimedia
447(2)
14.5 Music Processing
449(2)
14.5.1 Representation of Music
450(1)
14.5.2 Computer Music for Multimedia
450(1)
14.6 VLSI Design for Speech/Audio Processing
451(7)
14.6.1 VLSI Speech/Audio Processors
453(4)
14.6.2 Commercial Hardware Products
457(1)
14.7 Conclusions
458(1)
Acknowledgments
458(1)
References
459(4)
15 SPEECH RECOGNITION IN MULTIMEDIA HUMAN-MACHINE INTERFACES USING NEURAL NETWORKS
463(27)
15.1 Introduction
463(3)
15.1.1 Motivation and Applications of Speech Recognition to Multimedia Systems
463(1)
15.1.2 Current State and Related Problems in Mandarin Speech Recognition
464(1)
15.1.3 The Potential of Neural Networks for Mandarin Speech Recognition
465(1)
15.2 Neural Networks for Isolated Mandarin Speech Recognition
466(5)
15.2.1 The Acoustic Signal Processor
466(2)
15.2.2 The Language Processing Model
468(3)
15.3 Continuous Mandarin Speech Recognition Based on Neural Networks
471(11)
15.3.1 Segmenting Recognizer for Continuous Speech
471(3)
15.3.2 Nonsegmenting DTW Recognizer Using Neural Networks
474(4)
15.3.3 Keyword Spotting Using Neural Networks
478(4)
15.4 VenusDictate: A Robust and Practical Mandarin Speech Recognition System for Multimedia Applications
482(4)
15.4.1 Introduction to VenusDictate System
482(1)
15.4.2 System Description
482(3)
15.4.3 Applications to Multimedia Systems
485(1)
15.5 Future Trends and Conclusions
486(1)
References
486(4)
16 HANDWRITTEN RECOGNITION FOR THE MULTIMEDIA HUMAN-MACHINE INTERFACE
490(37)
16.1 Introduction
490(2)
16.1.1 Motivation and Applications of Handwritten Recognition to Multimedia Systems
491(1)
16.1.2 Current Status and Related Problems in Handwritten Recognition
491(1)
16.2 Techniques for Handwritten Recognition
492(21)
16.2.1 Overview of Handwritten Recognition
492(3)
16.2.2 Handwritten English and Numerical Character Recognition
495(5)
16.2.3 Handwritten Chinese Character Recognition
500(7)
16.2.4 On-Line Handwritten Recognition
507(3)
16.2.5 Source of Information on Handwritten Recognition
510(3)
16.3 Handwritten Recognition Systems
513(7)
16.3.1 CCL FR1000 Form Processing System
513(4)
16.3.2 NeuroScan II: A Handwritten Chinese Character Recognizer
517(2)
16.3.3 Pen Power OLCCR Systems
519(1)
16.4 Future Trends and Conclusions
520(1)
Acknowledgments
521(1)
References
521(6)
17 HARDWARE DESIGN FOR 3-D GRAPHICS
527(40)
17.1 Introduction
527(8)
17.1.1 Goal of the 3-D Graphics Processor
528(1)
17.1.2 Methods for Rendering 3-D Graphics
529(6)
17.2 3-D Graphics Hardware Architecture
535(14)
17.2.1 Standard 3-D Graphics Rendering Pipeline
535(2)
17.2.2 The Bottlenecks of 3-D Graphics Rendering
537(3)
17.2.3 Techniques for 3-D Graphics Hardware
540(9)
17.3 3-D Graphics Processors
549(11)
17.3.1 Geometric Subsystem
549(2)
17.3.2 Raster Subsystem
551(6)
17.3.3 Overall Graphics System
557(3)
17.4 The 3-D Graphics Application Program Interface
560(3)
17.4.1 Window-independent 3-D API
560(2)
17.4.2 Window-dependent 3-D API
562(1)
17.5 Summary
563(1)
Acknowledgments
564(1)
References
564(3)
18 VIRTUAL WORLDS AS FUZZY DYNAMICAL SYSTEMS
567(37)
18.1 Fuzzy Virtual Worlds
567(1)
18.2 Additive Fuzzy Systems
568(7)
18.3 Fuzzy Cognitive Maps
575(7)
18.3.1 Simple FCMs
577(1)
18.3.2 FCM Recall
578(1)
18.3.3 Augmented FCMs
579(2)
18.3.4 Nested FCMs
581(1)
18.4 Virtual Undersea World
582(9)
18.4.1 Augmented Virtual World
585(3)
18.4.2 Nested FCMs for Fish Schools
588(3)
18.5 Adaptive Fuzzy Cognitive Maps
591(5)
18.6 Conclusions
596(1)
References
597(2)
Appendix A Proof of the Fuzzy Approximation Theorem
599(1)
Appendix B Learning in SAMs: Unsupervised Clustering and Supervised Gradient Descent
600(4)
19 MULTIMEDIA VISUAL TELEPHONE SYSTEM
604(25)
19.1 Introduction
604(4)
19.1.1 Why Multimedia Communication
604(2)
19.1.2 The MPEG-4 Standard
606(1)
19.1.3 H.263: Video Coding Standard for the Visual Telephone System
607(1)
19.2 System Configuration for the Multimedia Visual Telephone
608(5)
19.2.1 Overview of the System
608(2)
19.2.2 H.263: Video Codec
610(2)
19.2.3 G.723: Speech Codec
612(1)
19.3 Video Coding Algorithms for the System
613(11)
19.3.1 H.263 vs. H.261
613(2)
19.3.2 Unrestricted Motion Vectors Mode
615(1)
19.3.3 Syntax-based Arithmetic Coding Mode
616(1)
19.3.4 Advanced Prediction Mode
617(5)
19.3.5 PB-frames Mode
622(2)
19.4 Performance Evaluation
624(2)
19.4.1 Complexity and Bottleneck
624(1)
19.4.2 Bit Rate vs. PSNR
624(1)
19.4.3 Subjective Tests
625(1)
19.5 Conclusions
626(1)
References
627(2)
20 ADVANCED TECHNIQUES IN AUDIO-VISUAL INTERACTION
629(26)
20.1 Introduction
629(2)
20.1.1 Audiovisual Interaction
629(1)
20.1.2 Bimodal Speech Production and Perception
630(1)
20.1.3 Phonemes and Visemes
630(1)
20.2 Media Conversion: Auditory and Visual Speech
631(2)
20.2.1 From Visual to Audio: Automatic Lipreading
632(1)
20.2.2 From Audio to Visual: Speech-Driven Face Animation
632(1)
20.3 Lip Synchronization
633(3)
20.3.1 Automatic Dialog Synchronization
633(1)
20.3.2 Speech-Assisted Video Processing
634(2)
20.3.3 Dubbing of Films and Language Translation
636(1)
20.4 Image Analysis and Synthesis Techniques
636(9)
20.4.1 Image Analysis: Lipreading
636(5)
20.4.2 Image Synthesis: Facial Animation
641(2)
20.4.3 An Example Lip-Tracking System
643(2)
20.5 Joint Audio-Video Processing
645(4)
20.5.1 Cross-Modal Predictive Coding
645(3)
20.5.2 Speech-Assisted Motion Compensation
648(1)
20.5.3 Bimodal Person Authentication/Identification
648(1)
20.6 Conclusions
649(1)
References
650(5)
Index 655(12)
About the Editors 667


About the Editors... Bing Sheu is professor in the Electrical Engineering Department and Chair of Colloquium Series and Publications at Integrated Media Systems Center (IMSC) at the University of Southern California. He has published more than 180 papers in international scientific and technical journals and conferences, and is co-editor of Microsystems Technology for Multimedia (IEEE Press, 1995). In addition, Dr. Sheu is the editor-in-chief of IEEE Transactions on VLSI Systems. Mohammed Ismail is professor in the Electrical Engineering Department at Ohio State University. Dr. Ismail has authored numerous publications in VLSI circuit design and signal processing, and has been awarded several patents in the area of analog VLSI. He is editor-in-chief of the Journal of Analog ICs and Signal Processing from Kluwer Academic Publishers, and is a Fellow of IEEE.