Atjaunināt sīkdatņu piekrišanu

Multimodal AI in Healthcare: A Paradigm Shift in Health Intelligence 2023 ed. [Hardback]

Edited by , Edited by , Edited by
  • Formāts: Hardback, 416 pages, height x width: 235x155 mm, weight: 822 g, 91 Illustrations, color; 10 Illustrations, black and white; XXII, 416 p. 101 illus., 91 illus. in color., 1 Hardback
  • Sērija : Studies in Computational Intelligence 1060
  • Izdošanas datums: 29-Nov-2022
  • Izdevniecība: Springer International Publishing AG
  • ISBN-10: 3031147707
  • ISBN-13: 9783031147708
Citas grāmatas par šo tēmu:
  • Hardback
  • Cena: 162,93 €*
  • * ši ir gala cena, t.i., netiek piemērotas nekādas papildus atlaides
  • Standarta cena: 191,69 €
  • Ietaupiet 15%
  • Grāmatu piegādes laiks ir 3-4 nedēļas, ja grāmata ir uz vietas izdevniecības noliktavā. Ja izdevējam nepieciešams publicēt jaunu tirāžu, grāmatas piegāde var aizkavēties.
  • Daudzums:
  • Ielikt grozā
  • Piegādes laiks - 4-6 nedēļas
  • Pievienot vēlmju sarakstam
  • Formāts: Hardback, 416 pages, height x width: 235x155 mm, weight: 822 g, 91 Illustrations, color; 10 Illustrations, black and white; XXII, 416 p. 101 illus., 91 illus. in color., 1 Hardback
  • Sērija : Studies in Computational Intelligence 1060
  • Izdošanas datums: 29-Nov-2022
  • Izdevniecība: Springer International Publishing AG
  • ISBN-10: 3031147707
  • ISBN-13: 9783031147708
Citas grāmatas par šo tēmu:
This book aims to highlight the latest achievements in the use of AI and multimodal artificial intelligence in biomedicine and healthcare. Multimodal AI is a relatively new concept in AI, in which different types of data (e.g. text, image, video, audio, and numerical data) are collected, integrated, and processed through a series of intelligence processing algorithms to improve performance. The edited volume contains selected papers presented at the 2022 Health Intelligence workshop and the associated Data Hackathon/Challenge, co-located with the Thirty-Sixth Association for the Advancement of Artificial Intelligence (AAAI) conference, and presents an overview of the issues, challenges, and potentials in the field, along with new research results. This book provides information for researchers, students, industry professionals, clinicians, and public health agencies interested in the applications of AI and Multimodal AI in public health and medicine.
Unsupervised Numerical Reasoning to Extract Phenotypes from Clinical
Text by Leveraging External Knowledge.- Customized Training of Pretrained
Language Models to Detect Post Intents in Online Health Support
Groups.- EXPECT-NLP: An Integrated Pipeline and User Interface for Exploring
Patient Preferences Directly from Patient-Generated Text.