Atjaunināt sīkdatņu piekrišanu

E-grāmata: Multimodal Learning for Clinical Decision Support and Clinical Image-Based Procedures: 10th International Workshop, ML-CDS 2020, and 9th International Workshop, CLIP 2020, Held in Conjunction with MICCAI 2020, Lima, Peru, October 4-8, 2020, Proceedings

  • Formāts: EPUB+DRM
  • Sērija : Lecture Notes in Computer Science 12445
  • Izdošanas datums: 03-Oct-2020
  • Izdevniecība: Springer Nature Switzerland AG
  • Valoda: eng
  • ISBN-13: 9783030609467
  • Formāts - EPUB+DRM
  • Cena: 53,52 €*
  • * ši ir gala cena, t.i., netiek piemērotas nekādas papildus atlaides
  • Ielikt grozā
  • Pievienot vēlmju sarakstam
  • Šī e-grāmata paredzēta tikai personīgai lietošanai. E-grāmatas nav iespējams atgriezt un nauda par iegādātajām e-grāmatām netiek atmaksāta.
  • Formāts: EPUB+DRM
  • Sērija : Lecture Notes in Computer Science 12445
  • Izdošanas datums: 03-Oct-2020
  • Izdevniecība: Springer Nature Switzerland AG
  • Valoda: eng
  • ISBN-13: 9783030609467

DRM restrictions

  • Kopēšana (kopēt/ievietot):

    nav atļauts

  • Drukāšana:

    nav atļauts

  • Lietošana:

    Digitālo tiesību pārvaldība (Digital Rights Management (DRM))
    Izdevējs ir piegādājis šo grāmatu šifrētā veidā, kas nozīmē, ka jums ir jāinstalē bezmaksas programmatūra, lai to atbloķētu un lasītu. Lai lasītu šo e-grāmatu, jums ir jāizveido Adobe ID. Vairāk informācijas šeit. E-grāmatu var lasīt un lejupielādēt līdz 6 ierīcēm (vienam lietotājam ar vienu un to pašu Adobe ID).

    Nepieciešamā programmatūra
    Lai lasītu šo e-grāmatu mobilajā ierīcē (tālrunī vai planšetdatorā), jums būs jāinstalē šī bezmaksas lietotne: PocketBook Reader (iOS / Android)

    Lai lejupielādētu un lasītu šo e-grāmatu datorā vai Mac datorā, jums ir nepieciešamid Adobe Digital Editions (šī ir bezmaksas lietotne, kas īpaši izstrādāta e-grāmatām. Tā nav tas pats, kas Adobe Reader, kas, iespējams, jau ir jūsu datorā.)

    Jūs nevarat lasīt šo e-grāmatu, izmantojot Amazon Kindle.

This book constitutes the refereed joint proceedings of the 10th International Workshop on Multimodal Learning for Clinical Decision Support, ML-CDS 2020, and the 9th International Workshop on Clinical Image-Based Procedures, CLIP 2020, held in conjunction with the 23rd International Conference on Medical Imaging and Computer-Assisted Intervention, MICCAI 2020, in Lima, Peru, in October 2020. The workshops were held virtually due to the COVID-19 pandemic.

The 4 full papers presented at ML-CDS 2020 and the 9 full papers presented at CLIP 2020 were carefully reviewed and selected from numerous submissions to ML-CDS and 10 submissions to CLIP. The ML-CDS papers discuss machine learning on multimodal data sets for clinical decision support and treatment planning. The CLIP workshops provides a forum for work centered on specific clinical applications, including techniques and procedures based on comprehensive clinical image and other data.

CLIP 2020.- Optimal Targeting Visualizations for Surgical Navigation of
Iliosacral Screws.- Prediction of Type II Diabetes Onset with Computed
Tomography and Electronic Medical Records.- A Radiomics-based Machine
Learning Approach to Assess Collateral Circulation in Stroke on Non-contrast
Computed Tomography.- Image-based Subthalamic Nucleus Segmentation for Deep
Brain Surgery With Electrophysiology Aided Refinement.- 3D Slicer
Craniomaxillofacial Modules Support Patient-specific Decision-making for
Personalized Healthcare in Dental Research.- Learning Representations of
Endoscopic Videos to Detect Tool Presence Without Supervision.- Single-shot
Deep Volumetric Regression for Mobile Medical Augmented Reality.- A Baseline
Approach for AutoImplant: the MICCAI 2020 Cranial Implant Design Challenge.-
Adversarial Prediction of Radiotherapy Treatment Machine Parameters.- ML-CDS
2020.- Soft Tissue Sarcoma Co-Segmentation in Combined MRI and PET/CT Data.-
Towards Automated Diagnosis with Attentive Multi-Modal Learning Using
Electronic Health Records and Chest X-rays.- LUCAS: LUng CAncer Screening
with Multimodal Biomarkers.- Automatic Breast Lesion Classification by Joint
Neural Analysis of Mammography and Ultrasound.