Atjaunināt sīkdatņu piekrišanu

E-grāmata: Multiphase Flow in Permeable Media: A Pore-Scale Perspective

(Imperial College of Science, Technology and Medicine, London)
  • Formāts: PDF+DRM
  • Izdošanas datums: 16-Feb-2017
  • Izdevniecība: Cambridge University Press
  • Valoda: eng
  • ISBN-13: 9781316862285
  • Formāts - PDF+DRM
  • Cena: 68,99 €*
  • * ši ir gala cena, t.i., netiek piemērotas nekādas papildus atlaides
  • Ielikt grozā
  • Pievienot vēlmju sarakstam
  • Šī e-grāmata paredzēta tikai personīgai lietošanai. E-grāmatas nav iespējams atgriezt un nauda par iegādātajām e-grāmatām netiek atmaksāta.
  • Formāts: PDF+DRM
  • Izdošanas datums: 16-Feb-2017
  • Izdevniecība: Cambridge University Press
  • Valoda: eng
  • ISBN-13: 9781316862285

DRM restrictions

  • Kopēšana (kopēt/ievietot):

    nav atļauts

  • Drukāšana:

    nav atļauts

  • Lietošana:

    Digitālo tiesību pārvaldība (Digital Rights Management (DRM))
    Izdevējs ir piegādājis šo grāmatu šifrētā veidā, kas nozīmē, ka jums ir jāinstalē bezmaksas programmatūra, lai to atbloķētu un lasītu. Lai lasītu šo e-grāmatu, jums ir jāizveido Adobe ID. Vairāk informācijas šeit. E-grāmatu var lasīt un lejupielādēt līdz 6 ierīcēm (vienam lietotājam ar vienu un to pašu Adobe ID).

    Nepieciešamā programmatūra
    Lai lasītu šo e-grāmatu mobilajā ierīcē (tālrunī vai planšetdatorā), jums būs jāinstalē šī bezmaksas lietotne: PocketBook Reader (iOS / Android)

    Lai lejupielādētu un lasītu šo e-grāmatu datorā vai Mac datorā, jums ir nepieciešamid Adobe Digital Editions (šī ir bezmaksas lietotne, kas īpaši izstrādāta e-grāmatām. Tā nav tas pats, kas Adobe Reader, kas, iespējams, jau ir jūsu datorā.)

    Jūs nevarat lasīt šo e-grāmatu, izmantojot Amazon Kindle.

Hydrocarbon production, gas recovery from shale, CO2 storage and water management have a common scientific underpinning: multiphase flow in porous media. This book provides a fundamental description of multiphase flow through porous rock, with emphasis on the understanding of displacement processes at the pore, or micron, scale. Fundamental equations and principal concepts using energy, momentum, and mass balance are developed, and the latest developments in high-resolution three-dimensional imaging and associated modelling are explored. The treatment is pedagogical, developing sound physical principles to predict flow and recovery through complex rock structures, while providing a review of the recent literature. This systematic approach makes it an excellent reference for those who are new to the field. Inspired by recent research, and based on courses taught to thousands of students and professionals from around the world, it provides the scientific background necessary for a quantitative assessment of multiphase subsurface flow processes, and is ideal for hydrology and environmental engineering students, as well as professionals in the hydrocarbon, water and carbon storage industries.

Recenzijas

'This brilliant and original textbook integrates the most up-to-date understanding of the physics of fluid transport through porous media with recent advances in digital rock physics. The result provides fresh insight into multiphase fluid flow and transport to benefit students and researchers alike.' Anthony Kovscek, Stanford University, California 'This beautifully written and elegantly illustrated book uses the latest theoretical and experimental insights to provide the most comprehensive review of the fundamental physical and chemical processes that occur at the pore-scale during multi-phase flow in permeable media a much needed contribution that will impact geoscientists and engineers from both academia and industry, for years to come.' Sebastian Geiger, Heriot-Watt University, Edinburgh 'This book quickly has become one of my all-time favorite textbooks . the mix of original papers, classic works, review papers, and textbooks, together with an expansive and up-to-date collection of current literature, is one of the strongest points of the book. The reference list alone is worth the cost of this volume This is one of those rare books that hits the ne balance between supercial and too much detail I highly recommend Multiphase Flow in Permeable Media (Blunt 2017) to anyone interested in the ow of immiscible uids in the subsurface.' Benjamin J. Rostron, Groundwater 'This first-edition book is available in electronic and hardcover formats and is well illustrated with figures. It is a well-organized volume.' Amit Padhi, The Leading Edge

Papildus informācija

This book provides a fundamental description of multiphase fluid flow through porous rock, based on understanding movement at the pore, or microscopic, scale.
Preface xiii
Acknowledgements xvi
List of Symbols xvii
1 Interfacial Curvature and Contact Angle 1(16)
1.1 Interfacial Tension
1(3)
1.2 Young-Laplace Equation
4(3)
1.3 The Young Equation and Contact Angle
7(10)
1.3.1 The Young Equation as an Energy Balance
10(1)
1.3.2 Interfacial Tension, Roughness and Wettability
11(3)
1.3.3 Capillary Rise
14(2)
1.3.4 Historical Interlude: Thomas Young and the Marquis de Laplace
16(1)
2 Porous Media and Fluid Displacement 17(56)
2.1 Pore-Space Images
17(15)
2.1.1 Statistical and Process-Based Pore-Space Reconstruction
22(7)
2.1.2 Definition of a Porous Medium, Representative Volumes, Porosity and Saturation
29(3)
2.2 Pore-Scale Networks and Topological Description
32(24)
2.2.1 Transport Networks
33(2)
2.2.2 Network Construction
35(10)
2.2.3 Generalized Network Models
45(5)
2.2.4 Topological Descriptors of the Pore Space
50(6)
2.3 Wettability and Displacement
56(17)
2.3.1 Thermodynamic Description of Displacement Processes
56(3)
2.3.2 Displacement Sequences
59(1)
2.3.3 Wettability and Wettability Change
60(5)
2.3.4 Surface Roughness and Contact Angle Hysteresis
65(4)
2.3.5 Effective Contact Angle and Curvature
69(4)
3 Primary Drainage 73(42)
3.1 Entry Pressures and Fluid Configurations
74(11)
3.1.1 Wetting Layers
79(3)
3.1.2 Entry Pressures for Irregular Throats
82(3)
3.2 Macroscopic Capillary Pressure in Drainage
85(4)
3.3 Bundle of Tubes Model and the Throat Size Distribution
89(6)
3.3.1 Prediction of Capillary Pressure from Images
92(3)
3.4 Invasion Percolation
95(15)
3.4.1 Scaling Relations in Invasion Percolation
99(6)
3.4.2 Displacement under Gravity and Gradient Percolation
105(4)
3.4.3 Invasion Percolation, Normal Percolation and Flow
109(1)
3.5 Final Saturation and Maximum Capillary Pressure
110(5)
4 Imbibition and Trapping 115(73)
4.1 Layer Flow, Swelling and Snap-Off
116(10)
4.1.1 Roof Snap-Off during Drainage
122(4)
4.2 Piston-Like Advance and Pore Filling
126(19)
4.2.1 Piston-Like Throat Filling
126(2)
4.2.2 Cooperative Pore Filling
128(4)
4.2.3 Competition between Snap-Off and Cooperative Pore Filling
132(3)
4.2.4 Frequency of Different Filling Events
135(6)
4.2.5 Dynamics of Filling
141(3)
4.2.6 Displacement as a Series of Metastable States
144(1)
4.3 Displacement Patterns in Imbibition
145(16)
4.3.1 Percolation with Trapping
145(2)
4.3.2 Invasion Percolation with Trapping
147(1)
4.3.3 Frontal Advance
148(1)
4.3.4 Cluster Growth
149(1)
4.3.5 Phase Diagrams for Capillary-Controlled Displacement
149(8)
4.3.6 Infiltration or Unstable Imbibition under Gravity
157(4)
4.4 Macroscopic Capillary Pressure
161(4)
4.5 Interfacial Area
165(3)
4.6 Capillary Trapping and Residual Saturation
168(20)
4.6.1 Direct Imaging of Trapped Clusters and Percolation Theory
168(8)
4.6.2 Effect of Initial Saturation
176(12)
5 Wettability and Displacement Paths 188(31)
5.1 Definitions and Capillary Pressure Cycles
188(6)
5.2 Oil and Water Layers
194(7)
5.2.1 Pinned Water Layers and Forced Snap-Off
194(2)
5.2.2 Forced Water Injection and Oil Layer Formation
196(4)
5.2.3 Recap of Displacement Processes
200(1)
5.3 Capillary Pressures and Wettability Indices
201(10)
5.3.1 Wettability Trends and Relationships between Indices
204(4)
5.3.2 Displacement Statistics in Mixed-Wet Systems
208(3)
5.4 Trapping in Mixed-Wet and Oil-Wet Media
211(8)
5.4.1 Layer Connectivity as a Function of Initial Water Saturation
213(3)
5.4.2 Pore-Scale Observation of Trapping in Mixed-Wet Systems
216(3)
6 Navier-Stokes Equations, Darcy's Law and Multiphase Flow 219(96)
6.1 Navier-Stokes Equations and Conservation of Mass
219(17)
6.1.1 Flow in a Pipe
221(4)
6.1.2 The Washburn Equation
225(3)
6.1.3 Flow in Wetting Layers
228(5)
6.1.4 Reynolds Number and the Stokes Equation
233(3)
6.2 Darcy's Law and Permeability
236(18)
6.2.1 Permeability of a Bundle of Capillary Tubes
238(1)
6.2.2 Typical Permeability Values
239(4)
6.2.3 The Leverett J Function
243(4)
6.2.4 Computing Flow Fields on Pore-Space Images
247(7)
6.3 The Multiphase Darcy Law and Relative Permeability
254(3)
6.3.1 Historical Interlude: Muskat, Leverett and Buckingham
254(1)
6.3.2 Assumptions Inherent in the Multiphase Darcy Law
255(2)
6.4 Capillary Number and Pore-Scale Dynamics
257(41)
6.4.1 Macroscopic Flow Patterns for Imbibition
257(6)
6.4.2 Capillary Number and the Perturbative Effect of Flow Rate
263(2)
6.4.3 Layer Conductance and Viscous Effects
265(5)
6.4.4 Correlation Lengths for Percolation-Like Displacement
270(3)
6.4.5 Correlation Length and Residual Saturation
273(2)
6.4.6 Mobilization of Trapped Ganglia
275(4)
6.4.7 Ganglion Dynamics, Connectivity and Flow Regimes
279(6)
6.4.8 Viscous and Capillary Forces as an Energy Balance
285(3)
6.4.9 Direct Computation of Multiphase Flow
288(10)
6.5 Extensions to the Multiphase Darcy Law
298(6)
6.5.1 Infiltration and Phase Field Models
298(2)
6.5.2 Accounting for Non-Equilibrium Effects
300(1)
6.5.3 Averaged Equations from Energy, Momentum and Entropy Balance
301(2)
6.5.4 Consideration of Trapped Phases and Other Approaches
303(1)
6.6 Flow Regimes
304(11)
6.6.1 Dimensionless Numbers
305(1)
6.6.2 Viscous Fingering and DLA
306(3)
6.6.3 Summary of Regime Diagrams
309(6)
7 Relative Permeability 315(39)
7.1 Water-Wet Media
315(11)
7.1.1 Primary Drainage
315(3)
7.1.2 Waterflooding
318(1)
7.1.3 Predictions of Relative Permeability
319(3)
7.1.4 Relative Permeabilities for Different Rock Types
322(3)
7.1.5 Effect of Initial Saturation
325(1)
7.2 Effect of Wettability
326(17)
7.2.1 Oil-Wet Media
327(2)
7.2.2 Cross-Over Saturation and Waterflood Recovery
329(1)
7.2.3 Mixed-Wet Media
330(3)
7.2.4 Hysteresis in the Water Relative Permeability
333(3)
7.2.5 Hysteresis in the Oil Relative Permeability
336(2)
7.2.6 Features of Relative Permeability in Mixed-Wet Rocks
338(2)
7.2.7 Guidelines for Assessing Wettability
340(3)
7.3 Effect of Capillary Number and Viscosity Ratio
343(4)
7.3.1 Relative Permeability in the Viscous Limit
344(2)
7.3.2 Viscosity Ratio and Viscous Coupling
346(1)
7.4 Empirical Models
347(7)
7.4.1 Relative Permeability of a Bundle of Tubes
348(2)
7.4.2 Functional Forms for Relative Permeability and Capillary Pressure
350(2)
7.4.3 Empirical Models in Hydrology
352(2)
8 Three-Phase Flow 354(48)
8.1 Spreading
354(4)
8.2 Contact Angles and the Bartell-Osterhof Equation
358(6)
8.2.1 Wetting and Spreading in Three-Phase Flow
360(1)
8.2.2 Why Ducks Don't Get Wet
361(2)
8.2.3 Wettability States in Three-Phase Flow
363(1)
8.3 Oil Layers
364(9)
8.3.1 Mixed-Wettability and Layer Stability
365(1)
8.3.2 Three Phases in Capillary/Gravity Equilibrium
366(2)
8.3.3 Layer Conductance and Relative Permeability
368(5)
8.4 Displacement Processes
373(8)
8.4.1 Fluid Configurations
373(2)
8.4.2 Configuration Changes and Layer Stability
375(1)
8.4.3 Multiple Displacement
375(3)
8.4.4 Displacement Paths
378(3)
8.5 Three-Phase Relative Permeability
381(21)
8.5.1 Pore Occupancy and Saturation Dependence
386(3)
8.5.2 Predictions of Three-Phase Relative Permeability
389(2)
8.5.3 Trapping in Three-Phase Flow
391(6)
8.5.4 Direct Imaging of Trapped Phases in Three-Phase Flow
397(1)
8.5.5 Empirical Models in Three-Phase Flow
397(5)
9 Solutions to Equations for Multiphase Flow 402(35)
9.1 Conservation Equations for Multiphase Flow
402(9)
9.1.1 Equations in One Dimension and the Fractional Flow
405(1)
9.1.2 Waterflooding and Spontaneous Imbibition
405(2)
9.1.3 Exemplar Relative Permeabilities and Capillary Pressures
407(4)
9.1.4 Boundary Conditions for One-Dimensional Flow Problems
411(1)
9.2 Buckley-Leverett Analysis for Two-Phase Flow
411(11)
9.2.1 Dimensionless Variables and Wavespeeds
413(1)
9.2.2 Shocks
414(1)
9.2.3 Constructing a Solution for Saturation
415(3)
9.2.4 Recovery Calculations
418(1)
9.2.5 Example Recovery Curves
418(4)
9.3 Analysis of Imbibition
422(10)
9.3.1 Capillary Dispersion and Fractional Flow
422(5)
9.3.2 Example Solutions
427(3)
9.3.3 Experimental Analysis of Spontaneous Imbibition
430(2)
9.4 Recovery, Imbibition and the Trillion-Barrel Question
432(5)
Appendix Exercises 437(10)
References 447(28)
Index 475
Martin J. Blunt is Professor of Petroleum Engineering at Imperial College London, visiting professor at Politecnico di Milano and Editor-in-Chief of the journal Transport in Porous Media. He publishes widely on multiphase flow in porous media applied to oil recovery, groundwater flows and carbon dioxide storage. He is a distinguished member of the Society of Petroleum Engineers (SPE), having won the 2011 SPE Lester C. Uren Award, and the 2012 Darcy Medal for lifetime achievement from the Society of Core Analysts. This book is inspired by recent research, and based on courses taught to thousands of students and professionals from around the world.